Lʼobjectif de cet article est de prouver lʼexistence de solutions non-topologiques du modèle de Chern–Simons Higgs dans . Un problème de longue date existe pour cette équation : Soit N points vortex et , existe-t-il une solution non-topologique dans telle que le flux magnétique total est égal à ? Dans cet article, nous prouvons lʼexistence dʼune solution pour . Nous appliquons lʼanalyse par bulles et la theorie de Leray–Schauder pour résoudre ce problème.
In this paper we investigate the existence of non-topological solutions of the Chern–Simons Higgs model in . A long standing problem for this equation is: Given N vortex points and , does there exist a non-topological solution in such that the total magnetic flux is equal to ? In this paper, we prove the existence of such a solution if . We apply the bubbling analysis and the Leray–Schauder degree theory to solve this problem.
@article{AIHPC_2011__28_6_837_0, author = {Choe, Kwangseok and Kim, Namkwon and Lin, Chang-Shou}, title = {Existence of self-dual non-topological solutions in the Chern--Simons Higgs model}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {28}, year = {2011}, pages = {837-852}, doi = {10.1016/j.anihpc.2011.06.003}, mrnumber = {2859930}, zbl = {1232.81031}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2011__28_6_837_0} }
Choe, Kwangseok; Kim, Namkwon; Lin, Chang-Shou. Existence of self-dual non-topological solutions in the Chern–Simons Higgs model. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) pp. 837-852. doi : 10.1016/j.anihpc.2011.06.003. http://gdmltest.u-ga.fr/item/AIHPC_2011__28_6_837_0/
[1] Profile of blow-up solutions to mean field equations with singular data, Comm. Partial Differential Equations 29 (2004), 1241-1265 | MR 2097983 | Zbl 1062.35146
, , , ,[2] Vortex condensation in the Chern–Simons–Higgs model: An existence theorem, Comm. Math. Phys. 168 (1995), 321-336 | MR 1324400 | Zbl 0846.58063
, ,[3] The existence of non-topological multivortex solutions in the relativistic self-dual Chern–Simons theory, Comm. Math. Phys. 215 (2000), 119-142 | MR 1800920 | Zbl 1002.58015
, ,[4] Non-topological multi-vortex solutions to the self-dual Chern–Simons–Higgs equation, Comm. Math. Phys. 231 (2002), 189-221 | MR 1946331 | Zbl 1018.58008
, , ,[5] Mean field equations of Liouville type with singular data: Sharper estimates, Discrete Contin. Dyn. Syst. 28 (2010), 1667-1727 | MR 2644788
, ,[6] A nonlinear elliptic equation arising from gauge theory and cosmology, Proc. R. Soc. Lond. A 446 (1994), 453-478 | MR 1297740 | Zbl 0813.35015
, , , ,[7] Asymptotic behavior of condensate solutions in the Chern–Simons–Higgs theory, J. Math. Phys. 48 (2007), 103501 | MR 2362794 | Zbl 1152.81376
,[8] Multiple existence results for the self-dual Chern–Simons–Higgs vortex equation, Comm. Partial Differential Equations 34 (2009), 1465-1507 | MR 2581980 | Zbl 1185.35274
,[9] Blow-up solutions of the self-dual Chern–Simons–Higgs vortex equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008), 313-338 | Numdam | MR 2396525 | Zbl 1145.35029
, ,[10] Self-Dual Chern–Simons Theories, Springer Lecture Note Physics vol. M36, Springer, Berlin (1995) | Zbl 0834.58001
,[11] Multivortex solutions of the abelian Chern–Simons–Higgs theory, Phys. Rev. Lett. 64 (1990), 2230-2233 | MR 1050529 | Zbl 1014.58500
, , ,[12] Self-dual Chern–Simons vortices, Phys. Rev. Lett. 64 (1990), 2234-2237 | MR 1050530 | Zbl 1050.81595
, ,[13] Vortices and Monopoles, Birkhäuser, Boston (1980) | MR 614447 | Zbl 0457.53034
, ,[14] Existence of vortices in a self-dual gauged linear sigma model and its singular limit, Nonlinearity 19 (2006), 721-739 | MR 2209296 | Zbl 1122.35011
,[15] Supersymmetric Chern–Simons vortex systems and fermion zero modes, Phys. Rev. D 45 (1992), 4588-4599 | MR 1170319
, , ,[16] Supersymmetry and self-dual Chern–Simons systems, Phys. Lett. B 243 (1990), 105-108 | MR 1061565
, , ,[17] Elliptic functions, Green functions and the mean field equations on tori, Ann. Math. II 172 (2010), 911-954 | MR 2680484 | Zbl 1207.35011
, ,[18] Bubbling solutions for relativistic Abelian Chern–Simons model on a torus, Comm. Math. Phys. 297 (2010), 733-758 | MR 2653901 | Zbl 1195.35150
, ,[19] Topics in Nonlinear Functional Analysis, Courant Lecture Notes in Mathematics, American Mathematics Society, Rhode Island (2001) | MR 1850453
,[20] Double vortex condensates in the Chern–Simons–Higgs theory, Calc. Var. Partial Differential Equations 9 (1999), 31-94 | MR 1710938 | Zbl 0951.58030
, ,[21] The existence of nontopological solitons in the self-dual Chern–Simons theory, Comm. Math. Phys. 149 (1992), 361-376 | MR 1186034 | Zbl 0760.53063
, ,[22] Topological solutions in the self-dual Chern–Simons theory: Existence and approximation, Ann. Inst. Henri Poincaré 12 (1995), 75-97 | Numdam | MR 1320569 | Zbl 0836.35007
, ,[23] Multiple condensate solutions for the Chern–Simons–Higgs theory, J. Math. Phys. 37 (1996), 3769-3796 | MR 1400816 | Zbl 0863.58081
,[24] Selfdual Gauge Field Vortices: An Analytical Approach, Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Boston (2008) | MR 2403854
,[25] Solutions in Field-Theory and Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag, New York (2001) | MR 1838682
,[26] The existence of Chern–Simons vortices, Comm. Math. Phys. 137 (1991), 587-597 | MR 1105432 | Zbl 0733.58009
,[27] Symmetries and the calculations of degree, Chin. Ann. of Math. B 16 (1989), 520-536 | MR 1038386 | Zbl 0705.58006
,