We show that different notions of solutions to measure data problems involving p-Laplace type operators and nonnegative source measures are locally essentially equivalent. As an application we characterize singular solutions of multidimensional Riccati type partial differential equations.
@article{AIHPC_2011__28_6_775_0, author = {Kilpel\"ainen, Tero and Kuusi, Tuomo and Tuhola-Kujanp\"a\"a, Anna}, title = {Superharmonic functions are locally renormalized solutions}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {28}, year = {2011}, pages = {775-795}, doi = {10.1016/j.anihpc.2011.03.004}, mrnumber = {2859927}, zbl = {1234.35121}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2011__28_6_775_0} }
Kilpeläinen, Tero; Kuusi, Tuomo; Tuhola-Kujanpää, Anna. Superharmonic functions are locally renormalized solutions. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) pp. 775-795. doi : 10.1016/j.anihpc.2011.03.004. http://gdmltest.u-ga.fr/item/AIHPC_2011__28_6_775_0/
[1] On the connection between two quasilinear elliptic problems with a source terms of order 0 or 1, http://arxiv.org/abs/0811.3292v1 | MR 2733197 | Zbl 1205.35135
, ,[2] Some remarks on elliptic problems with critical growth in the gradient, J. Differential Equations 222 no. 1 (2006), 21-62
, , ,[3] Corrigendum to “Some remarks on elliptic problems with critical growth in the gradient”, J. Differential Equations 246 no. 7 (2009), 2988-2990 | MR 2200746 | Zbl 1168.35329
, , ,[4] An -theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), 241-273 | Numdam | MR 1354907 | Zbl 0866.35037
, , , , , ,[5] Removable singularities and existence for a quasilinear equation with absorption or source term and measure data, Adv. Nonlinear Stud. 3 no. 1 (2003), 25-63 | MR 1955596 | Zbl 1173.35503
,[6] Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal. 87 no. 1 (1989), 149-169 | MR 1025884 | Zbl 0707.35060
, ,[7] Approximated solutions of equations with data. Application to the H-convergence of quasi-linear parabolic equations, Ann. Mat. Pura Appl. (4) 170 (1996), 207-240 | MR 1441620
,[8] Nonlinear elliptic equations with natural growth in general domains, Ann. Mat. Pura Appl. (4) 181 no. 4 (2002), 407-426 | MR 1939689 | Zbl 1097.35050
, , ,[9] Some properties of reachable solutions of nonlinear elliptic equations with measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), 375-396 | Numdam | MR 1655522 | Zbl 1033.35034
, ,[10] Local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. Ser. A: Theory Methods 7 no. 8 (1983), 827-850 | MR 709038 | Zbl 0539.35027
,[11] Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 741-808 | Numdam | MR 1760541 | Zbl 0958.35045
, , , ,[12] Comparison and existence results for classes of nonlinear elliptic equations with general growth in the gradient, Adv. Nonlinear Stud. 7 no. 1 (2007), 31-46 | MR 2287526 | Zbl 05182589
, ,[13] Estimates for blow-up solutions to nonlinear elliptic equations with p-growth in the gradient, Z. Anal. Anwend. 29 no. 2 (2010), 219-234 | MR 2600019 | Zbl 1247.35050
, , , ,[14] Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small, Nonlinear Anal. Ser. A: Theory Methods 42 no. 7 (2000), 1309-1326 | MR 1780731 | Zbl 1158.35358
, ,[15] Existence and comparison results for quasilinear elliptic equations with critical growth in the gradient, J. Differential Equations 171 no. 1 (2001), 1-23 | MR 1816791 | Zbl 0973.35075
,[16] Existence results for a class of nonlinear elliptic problems with p-growth in the gradient, Nonlinear Anal. 52 no. 3 (2003), 931-942 | MR 1937874 | Zbl 1087.35037
, ,[17] Criteria of solvability for multidimensional Riccati equations, Ark. Mat. 37 no. 1 (1999), 87-120 | MR 1673427
, , ,[18] Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble) 33 no. 4 (1983), 161-187 | Numdam | MR 727526 | Zbl 0508.31008
, ,[19] Nonlinear Potential Theory of Degenerate Elliptic Equations, Dover Publications, Inc., Mineola, NY (2006) | MR 2305115 | Zbl 0776.31007
, , ,[20] The fundamental solution of nonlinear equations with natural growth terms, http://arxiv.org/abs/1002.4664 | MR 3088438 | Zbl 1307.35099
, ,[21] Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), 591-613 | Numdam | MR 1205885 | Zbl 0797.35052
, ,[22] The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math. 172 (1994), 137-161 | MR 1264000 | Zbl 0820.35063
, ,[23] An Introduction to Variational Inequalities and Their Applications, Pure Appl. Math. vol. 88, Academic Press, New York, London (1980) | MR 567696 | Zbl 0457.35001
, ,[24] A note on the Wolff potential estimate for solutions to elliptic equations involving measures, Adv. Calc. Var. 3 (2010), 99-113 | MR 2604619 | Zbl 1182.35222
, ,[25] P.-L. Lions, F. Murat, Sur les solutions renormalisées dʼéquations elliptiques non linéaires (informal communication).
[26] O. Martio, Quasilinear Riccati type equations and quasiminimizers, preprint 509, Department of Mathematics and Statistics, University of Helsinki, 2010. | MR 2810143
[27] Symmetrization results for classes of nonlinear elliptic equations with q-growth in the gradient, Nonlinear Anal. 64 no. 12 (2006), 2688-2703 | MR 2218542 | Zbl 1242.35125
,[28] On the Wolff potential and quasilinear elliptic equations involving measures, Ann. Acad. Sci. Fenn. Math. Diss. 104 (1996) | MR 1386213 | Zbl 0860.35041
,[29] Gradient estimates below the duality exponent, Math. Ann. 346 (2010), 571-627 | MR 2578563 | Zbl 1193.35077
,[30] The Calderon–Zygmund theory for elliptic problems with measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 6 (2007), 195-261 | Numdam | MR 2352517 | Zbl 1178.35168
,[31] Nonlinear aspects of Calderon–Zygmund theory, Jahresber. Dtsch. Math.-Ver. 112 (2010), 159-191 | MR 2722503 | Zbl 1218.35104
,[32] Gradient potential estimates, J. Europ. Math. Soc. 13 (2011), 459-486 | MR 2746772 | Zbl 1217.35077
,[33] Quasilinear Riccati type equations with super-critical exponents, Comm. Partial Differential Equations 35 (2010), 1958-1981 | MR 2754075 | Zbl 1248.35084
,[34] Nonlinear elliptic equations having a gradient term with natural growth, J. Math. Pures Appl. 85 (2006), 465-492 | MR 2210085 | Zbl 1158.35364
, ,[35] Pathological solutions of elliptic differential equations, Ann. Scuola Norm. Sup. Pisa (3) 18 (1964), 385-387 | Numdam | MR 170094 | Zbl 0142.37601
,[36] Regularity for a class of non-linear elliptic systems, Acta Math. 138 no. 3–4 (1977), 219-240 | MR 474389 | Zbl 0372.35030
,[37] Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 no. 1 (1984), 126-150 | MR 727034 | Zbl 0488.35017
,[38] A potential theory approach to the equation , Ann. Acad. Sci. Fenn. Math. 35 (2010), 633-640 | MR 2731713 | Zbl 1210.35037
,[39] On the weak continuity of elliptic operators and applications to potential theory, Amer. J. Math. 124 (2002), 369-410 | MR 1890997 | Zbl 1067.35023
, ,[40] Quasilinear elliptic equations with signed measure data, Disc. Cont. Dyn. Systems 124 (2002), 369-410 | MR 2449089
, ,[41] Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Grad. Texts in Math. vol. 120, Springer-Verlag, New York (1989) | MR 1014685 | Zbl 0692.46022
,