Using a recent result of C. De Lellis and L. Székelyhidi Jr. (2010) [2] we show that, in the case of periodic boundary conditions and for arbitrary space dimension , there exist infinitely many global weak solutions to the incompressible Euler equations with initial data , where may be any solenoidal -vectorfield. In addition, the energy of these solutions is bounded in time.
@article{AIHPC_2011__28_5_727_0, author = {Wiedemann, Emil}, title = {Existence of weak solutions for the incompressible Euler equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {28}, year = {2011}, pages = {727-730}, doi = {10.1016/j.anihpc.2011.05.002}, mrnumber = {2838398}, zbl = {1228.35172}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2011__28_5_727_0} }
Wiedemann, Emil. Existence of weak solutions for the incompressible Euler equations. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) pp. 727-730. doi : 10.1016/j.anihpc.2011.05.002. http://gdmltest.u-ga.fr/item/AIHPC_2011__28_5_727_0/
[1] Navier–Stokes Equations, Chicago Lectures in Math., The University of Chicago Press, Chicago (1988) | MR 972259 | Zbl 0687.35071
, ,[2] On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal. 195 no. 1 (2010), 225-260 | MR 2564474 | Zbl 1192.35138
, ,[3] Sur le mouvement dʼun liquide visqueux emplissant lʼespace, Acta Math. 63 no. 1 (1934), 193-248 | MR 1555394
,[4] Generalised Young measures generated by ideal incompressible fluid flows, arXiv:1101.3499 (2011) | MR 2968597 | Zbl 1256.35072
, ,