Using a recent result of C. De Lellis and L. Székelyhidi Jr. (2010) [2] we show that, in the case of periodic boundary conditions and for arbitrary space dimension , there exist infinitely many global weak solutions to the incompressible Euler equations with initial data , where may be any solenoidal -vectorfield. In addition, the energy of these solutions is bounded in time.
@article{AIHPC_2011__28_5_727_0,
author = {Wiedemann, Emil},
title = {Existence of weak solutions for the incompressible Euler equations},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
volume = {28},
year = {2011},
pages = {727-730},
doi = {10.1016/j.anihpc.2011.05.002},
mrnumber = {2838398},
zbl = {1228.35172},
language = {en},
url = {http://dml.mathdoc.fr/item/AIHPC_2011__28_5_727_0}
}
Wiedemann, Emil. Existence of weak solutions for the incompressible Euler equations. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) pp. 727-730. doi : 10.1016/j.anihpc.2011.05.002. http://gdmltest.u-ga.fr/item/AIHPC_2011__28_5_727_0/
[1] , , Navier–Stokes Equations, Chicago Lectures in Math., The University of Chicago Press, Chicago (1988) | MR 972259 | Zbl 0687.35071
[2] , , On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal. 195 no. 1 (2010), 225-260 | MR 2564474 | Zbl 1192.35138
[3] , Sur le mouvement dʼun liquide visqueux emplissant lʼespace, Acta Math. 63 no. 1 (1934), 193-248 | MR 1555394
[4] , , Generalised Young measures generated by ideal incompressible fluid flows, arXiv:1101.3499 (2011) | MR 2968597 | Zbl 1256.35072