Motivated by transverse stability issues, we address the time evolution under the KP-II flow of perturbations of a solution which does not decay in all directions, for instance the KdV-line soliton. We study two different types of perturbations: perturbations that are square integrable in and perturbations that are square integrable in . In both cases we prove the global well-posedness of the Cauchy problem associated with such initial data.
@article{AIHPC_2011__28_5_653_0, author = {Molinet, Luc and Saut, Jean-Claude and Tzvetkov, Nikolay}, title = {Global well-posedness for the KP-II equation on the background of a non-localized solution}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {28}, year = {2011}, pages = {653-676}, doi = {10.1016/j.anihpc.2011.04.004}, mrnumber = {2838395}, zbl = {1279.35079}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2011__28_5_653_0} }
Molinet, Luc; Saut, Jean-Claude; Tzvetkov, Nikolay. Global well-posedness for the KP-II equation on the background of a non-localized solution. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) pp. 653-676. doi : 10.1016/j.anihpc.2011.04.004. http://gdmltest.u-ga.fr/item/AIHPC_2011__28_5_653_0/
[1] The Cauchy problem for the Kadomtsev–Petviashvili II equation with non-decaying data along a line, Stud. Appl. Math. 109 (2002), 151-162 | MR 1929582 | Zbl 1152.35480
, ,[2] The Cauchy problem for the Kadomtsev–Petviashvili II equation with data that do not decay along a line, Nonlinearity 17 (2004), 1843-1866 | MR 2086153 | Zbl 1082.35137
, ,[3] Solitary waves of the generalized KP equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 no. 2 (1997), 211-236 | Numdam | MR 1441393 | Zbl 0883.35103
, ,[4] On the Cauchy problem for the Kadomtsev–Petviashvili equation, GAFA 3 (1993), 315-341 | MR 1223434 | Zbl 0787.35086
,[5] Solitons: An Introduction, Cambridge Texts Appl. Math., Cambridge Univ. Press, Cambridge (1989) | MR 985322 | Zbl 0661.35001
, ,[6] Inverse scattering transform for the KP-I equation on the background of a one-line soliton, Nonlinearity 16 (2003), 771-783 | MR 1959109
, ,[7] Le problème de Cauchy pour des EDP semi linéaires périodiques en variables dʼespaces, Sém. Bourbaki (1994–1995), 163-187
,[8] On KP II equations on cylinders, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 no. 6 (2009), 2335-2358 | Numdam | MR 2569897 | Zbl 1181.35237
, , ,[9] Well-posedness for the Kadomtsev (KP II) equation and generalizations, Trans. Amer. Math. Soc. 360 (2008), 6555-6572 | MR 2434299 | Zbl 1157.35094
,[10] Well-posedness and scattering for the KP II equation in a critical space, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 no. 3 (2009), 917-941 | Numdam | MR 2526409 | Zbl 1169.35372
, , ,[11] Global well-posedness of the initial value problem for the KP I equation in the energy space, Invent. Math. 173 no. 2 (2008), 265-304 | MR 2415308 | Zbl 1188.35163
, , ,[12] Local and global Cauchy problems for the Kadomtsev–Petviashvili (KP-II) equation in Sobolev spaces of negative indices, Comm. Partial Differential Equations 26 (2001), 1027-1057 | MR 1843294 | Zbl 0993.35080
, ,[13] On the stability of solitary waves in weakly dispersive media, Soviet Phys. Dokl. 15 no. 6 (1970), 539-541 | Zbl 0217.25004
, ,[14] On the local and global well-posedness for the KP-I equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), 827-838 | Numdam | MR 2097033 | Zbl 1072.35162
,[15] Stability of the line soliton of the KP II equation under periodic transverse perturbations, arXiv:1008.0812v1 | MR 2885592 | Zbl 1233.35174
, ,[16] On the asymptotic behavior of solutions to the (generalized) Kadomtsev–Petviashvili–Burgers equation, J. Differential Equations 152 (1999), 30-74 | MR 1672012 | Zbl 0927.35095
,[17] Global well-posedness for the KP-I equation, Math. Ann. 324 (2002), 255-275, Math. Ann. 328 (2004), 707-710 | MR 2047648 | Zbl 1055.35103
, , ,[18] Global well-posedness of the KP-I equation on the background of a non localized solution, Comm. Math. Phys. 272 (2007), 775-810 | MR 2304475 | Zbl 1160.35065
, , ,[19] Theory of Solitons. The Inverse Scattering Method, Contemp. Soviet Math., Consultants Bureau, New York, London (1984) | MR 779467 | Zbl 0598.35002
, , , ,[20] Transverse instability for two-dimensional dispersive models, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), 477-496 | Numdam | MR 2504040 | Zbl 1169.35374
, ,[21] Transverse nonlinear instability for some Hamiltonian PDEʼs, J. Math. Pures Appl. 90 (2008), 550-590 | MR 2472893 | Zbl 1159.35063
, ,[22] N-soliton of the two-dimensional Korteweg–de Vries equation, J. Phys. Soc. Japan 40 (1976), 286-290 | MR 393896 | Zbl 1334.35296
,[23] Remarks on the generalized Kadomtsev–Petviashvili equations, Indiana Univ. Math. J. 42 (1993), 1017-1029 | MR 1254130
,[24] On the periodic KP-I type equations, Comm. Math. Phys. 221 (2001), 451-476 | MR 1852048 | Zbl 0984.35143
, ,[25] The Cauchy problem for higher order KP equations, J. Differential Equations 153 no. 1 (1999), 196-222 | MR 1682263 | Zbl 0927.35098
, ,[26] The Cauchy problem for the fifth order KP equation, J. Math. Pures Appl. 79 no. 4 (2000), 307-338 | MR 1753060 | Zbl 0961.35137
, ,[27] Global well-posedness for the Kadomtsev–Petviashvili II equation, Discrete Contin. Dyn. Syst. 6 (2000), 483-499 | MR 1739371 | Zbl 1021.35099
,[28] On the local regularity of Kadomtsev–Petviashvili-II equation, IMRN 8 (2001), 77-114 | MR 1810481 | Zbl 0977.35126
, ,[29] Global low regularity solutions for Kadomtsev–Petviashvili equation, Differential Integral Equations 13 (2000), 1289-1320 | MR 1787069 | Zbl 0977.35125
,[30] Instability and nonlinear oscillations of solitons, JETP Lett. 22 (1975), 172-173
,[31] Inverse scattering transform for the time dependent Schrödinger equation with applications to the KP-I equation, Comm. Math. Phys. 128 (1990), 551-564 | MR 1045884 | Zbl 0702.35241
,