Nous obtenons lʼexistence globale en temps de solutions faibles pour le problème de Cauchy dʼune équation modifiée Camassa–Holm à deux composantes. La solution faible globale est obtenue comme une limite de par approximation visqueuse. Les éléments clé dans notre analyse sont le théorème de Helly et certaines estimations a priori de supernorme dʼun seul côté et dʼintégrabilité dans lʼespace-temps des dérivées premières des solutions approchées.
We obtain the existence of global-in-time weak solutions for the Cauchy problem of a modified two-component Camassa–Holm equation. The global weak solution is obtained as a limit of viscous approximation. The key elements in our analysis are the Helly theorem and some a priori one-sided supernorm and space–time higher integrability estimates on the first-order derivatives of approximation solutions.
@article{AIHPC_2011__28_4_623_0, author = {Guan, Chunxia and Yin, Zhaoyang}, title = {Global weak solutions for a modified two-component Camassa--Holm equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {28}, year = {2011}, pages = {623-641}, doi = {10.1016/j.anihpc.2011.04.003}, zbl = {1241.35159}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2011__28_4_623_0} }
Guan, Chunxia; Yin, Zhaoyang. Global weak solutions for a modified two-component Camassa–Holm equation. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) pp. 623-641. doi : 10.1016/j.anihpc.2011.04.003. http://gdmltest.u-ga.fr/item/AIHPC_2011__28_4_623_0/
[1] Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à lʼhydrodynamique es fluides parfaits, Ann. Inst. Fourier 16 (1966), 319-361 | Numdam | Zbl 0148.45301
,[2] Acoustic scatting and the extended Korteweg–de Vries hierarchy, Adv. Math. 140 (1998), 190-206 | Zbl 0919.35118
, , ,[3] Global conservative solutions of the Camassa–Holm equation, Arch. Ration. Mech. Anal. 183 (2007), 215-239 | Zbl 1105.76013
, ,[4] Global dissipative solutions of the Camassa–Holm equation, Anal. Appl. 5 (2007), 1-27 | Zbl 1139.35378
, ,[5] An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993), 1661-1664 | Zbl 0972.35521
, ,[6] A new integrable shallow water equation, Adv. Appl. Mech. 31 (1994), 1-33 | Zbl 0808.76011
, , ,[7] A 2-component generalization of the Camassa–Holm equation and its solutions, Lett. Math. Phys. 75 (2006), 1-15 | Zbl 1105.35102
, , ,[8] Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal. 37 (2006), 1044-1069 | Zbl 1100.35106
, , ,[9] The Hamiltonian structure of the Camassa–Holm equation, Expo. Math. 15 (1997), 53-85
,[10] On the inverse spectral problem for the Camassa–Holm equation, J. Funct. Anal. 155 (1998), 352-363 | Zbl 0907.35009
,[11] Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier (Grenoble) 50 (2000), 321-362 | Numdam | Zbl 0944.35062
,[12] On the scattering problem for the Camassa–Holm equation, Proc. R. Soc. Lond. Ser. A 457 (2001), 953-970 | Zbl 0999.35065
,[13] The trajectories of particles in Stokes waves, Invent. Math. 166 (2006), 523-535 | Zbl 1108.76013
,[14] The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations, Arch. Ration. Mech. Anal. 193 (2009), 165-186 | Zbl 1169.76010
, ,[15] Well-posedness, global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math. 51 (1998), 475-504 | Zbl 0934.35153
, ,[16] Wave breaking for nonlinear nonlocal shallow water equations, Acta. Math. 181 (1998), 229-243 | Zbl 0923.76025
, ,[17] On the blow-up rate and the blow-up of breaking waves for a shallow water equation, Math. Z. 233 (2000), 75-91 | Zbl 0954.35136
, ,[18] Inverse scattering transform for the Camassa–Holm equation, Inverse Problems 22 (2006), 2197-2207 | Zbl 1105.37044
, , ,[19] Particle trajectories in solitary water waves, Bull. Amer. Math. Soc. 44 (2007), 423-431 | Zbl 1126.76012
, ,[20] Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis, Fluid Dynam. Res. 40 (2008), 175-211 | Zbl 1135.76007
, ,[21] Integrability of invariant metrics on the diffeomorphism group of the circle, J. Nonlinear Sci. 16 (2006), 109-122 | Zbl 1170.37336
, ,[22] A shallow water equation on the circle, Comm. Pure Appl. Math. 52 (1999), 949-982 | Zbl 0940.35177
, ,[23] Global weak solutions for a shallow water equation, Comm. Math. Phys. 211 (2000), 45-61 | Zbl 1002.35101
, ,[24] Stability of peakons, Comm. Pure Appl. Math. 53 (2000), 603-610 | Zbl 1049.35149
, ,[25] On an integrable two-component Camassa–Holm shallow water system, Phys. Lett. A 372 (2008), 7129-7132 | Zbl 1227.76016
, ,[26] An Introduction to Infinite-Dimensional Linear Systems Theory, Springer-Verlag, New York (1995) | Zbl 0839.93001
, ,[27] Model equations for nonlinear dispersive waves in compressible Mooney–Rivlin rod, Acta Mech. 127 (1998), 193-207 | MR 1606738 | Zbl 0910.73036
,[28] A few remarks on the Camassa–Holm equation, Differential Integral Equations 14 (2001), 953-988 | MR 1827098 | Zbl 1161.35329
,[29] Ordinary differential equations, transport theory and Sobolev space, Invent. Math. 98 (1989), 511-547 | MR 1022305 | Zbl 0696.34049
, ,[30] Solitons: an Introduction, Cambridge University Press, Cambridge (1989) | Zbl 0661.35001
, ,[31] Well-posedness and blow-up phenomena for the 2-component Camassa–Holm equation, Discrete Contin. Dyn. Syst. 19 (2007), 493-513 | MR 2335761 | Zbl 1149.35307
, , ,[32] Symplectic, their Bäcklund transformation and hereditary symmetries, Phys. D 4 (1981), 47-66 | MR 636470 | Zbl 1194.37114
, ,[33] Generalized Fourier transform and perturbations to soliton equations, Discrete Contin. Dyn. Syst. Ser. B 12 (2009), 579-595 | MR 2525157 | Zbl 1181.37108
, ,[34] Global existence and blow-up phenomena for an integrable two-component Camassa–Holm shallow water system, J. Differential Equations 248 (2010), 2003-2014 | MR 2595712 | Zbl 1190.35039
, ,[35] Well-posedness and blow-up phenomena for a modified tow-component Camassa–Holm equation, Proceedings of the 2008–2009 Special Year in Nonlinear Partial Differential Equations, Contemp. Math. vol. 526, Amer. Math. Soc. (2010), 199-220 | Zbl 1213.35133
, , ,[36] Global conservative multipeakon solutions of the Camassa–Holm equation, J. Hyperbolic Differ. Equ. 4 (2007), 39-64 | MR 2303475 | Zbl 1128.65065
, ,[37] Global conservative solutions of the Camassa–Holm equation – A Lagrangian point of view, Comm. Partial Differential Equations 32 (2007), 1511-1549 | MR 2372478 | Zbl 1136.35080
, ,[38] Dissipative solutions for the Camassa–Holm equation, Discrete Contin. Dyn. Syst. 24 (2009), 1047-1112 | MR 2505693 | Zbl 1178.65099
, ,[39] The Euler–Poincaré equations and semidirect products with applications to continuum theories, Adv. Math. 137 (1998), 1-81 | MR 1627802 | Zbl 0951.37020
, , ,[40] Singular solution of a modified two-component Camassa–Holm equation, Phys. Rev. E 79 (2009), 1-13 | MR 2552212
, , ,[41] Theory of Functions of a Real Variable, vol. 1, Frederick Ungar Publishing Co., New York (1974) | MR 148805
,[42] Compact sets in the space , Ann. Mat. Pura Appl. (4) 146 (1987), 65-96 | MR 916688 | Zbl 0629.46031
,[43] Quasi-linear equations of evolution, with applications to partial differential equations, Spectral Theory and Differential Equations, Lecture Notes in Math. vol. 448, Springer-Verlag, Berlin (1975), 25-70 | MR 407477
,[44] Commutator estimates and Navier–Stokes equations, Comm. Pure Appl. Math. 41 (1988), 203-208 | MR 951744
, ,[45] Poisson brackets in hydrodynamics, Discrete Contin. Dyn. Syst. 19 (2007), 555-574 | MR 2335765 | Zbl 1139.53040
,[46] Integrable nonlinear wave equations and possible connections to tsunami dynamics, Tsunami and Nonlinear Waves, Springer, Berlin (2007), 31-49 | MR 2364923 | Zbl 1310.76044
,[47] Well-posedness and blow-up solutions for an integrable nonlinear dispersive model wave equation, J. Differential Equations 162 (2000), 27-63 | MR 1741872
, ,[48] Mathematical Topics in Fluid Mechanics, vol. I. Incompressible Models, Oxford Lecture Ser. Math. Appl. vol. 3, Clarendon, Oxford University Press, New York (1996)
,[49] Semigroup of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York (1983) | MR 710486 | Zbl 0516.47023
,[50] Linear and Nonlinear Waves, J. Wiley and Sons, New York (1980) | MR 483954 | Zbl 0373.76001
,[51] On the weak solutions to a shallow water equation, Comm. Pure Appl. Math. 53 (2000), 1411-1433 | MR 1773414 | Zbl 1048.35092
, ,[52] Well-posedness, global existence and blowup phenomena for an integrable shallow water equation, Discrete Contin. Dyn. Syst. 10 (2004), 393-411 | MR 2083424 | Zbl 1061.35123
,