On étudie lʼinégalité de Korn–Poincaré : dans les domaines de type des coques dʼépaisseurs dʼordre h autour dʼune hypersurface compacte sans bord et regulière S de . Par , on réfère à la partie symétrique du gradient ∇u et on suppose la condition au bord : On démontre que reste uniformément borné car , pour tout champ de vecteurs dans une famille de cônes donnée (faisant un , uniforme en h) autour du complément orthogonal des extensions de champs de vecteurs de Killing sur S.On montre que cette condition est optimale comme tout champ de Killling u sur S admet une famille dʼextensions sur pour lesquelles le rapport tend à lʼinfini comme , même si les ne possèdent pas de symmetrie axiale.
We study the Korn–Poincaré inequality: in domains that are shells of small thickness of order h, around an arbitrary compact, boundaryless and smooth hypersurface S in . By we denote the symmetric part of the gradient ∇u, and we assume the tangential boundary conditions: We prove that remains uniformly bounded as , for vector fields u in any family of cones (with , uniform in h) around the orthogonal complement of extensions of Killing vector fields on S.We show that this condition is optimal, as in turn every Killing field admits a family of extensions , for which the ratio blows up as , even if the domains are not rotationally symmetric.
@article{AIHPC_2011__28_3_443_0, author = {Lewicka, Marta and M\"uller, Stefan}, title = {The uniform Korn--Poincar\'e inequality in thin domains}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {28}, year = {2011}, pages = {443-469}, doi = {10.1016/j.anihpc.2011.03.003}, mrnumber = {2795715}, zbl = {1253.74055}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2011__28_3_443_0} }
Lewicka, Marta; Müller, Stefan. The uniform Korn–Poincaré inequality in thin domains. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) pp. 443-469. doi : 10.1016/j.anihpc.2011.03.003. http://gdmltest.u-ga.fr/item/AIHPC_2011__28_3_443_0/
[1] On Poincaré type inequalities, Trans. Amer. Math. Soc. 349 no. 4 (1997), 1561-1585 | MR 1401517 | Zbl 0954.58022
, ,[2] A Riemannian version of Kornʼs inequality, Calc. Var. Partial Differential Equations 14 (2002), 517-530 | MR 1911827 | Zbl 1006.74011
, ,[3] Mathematical Elasticity, vol. 1: Three Dimensional Elasticity, North-Holland, Amsterdam (1993)
,[4] On the boundary-value problems of the theory of elasticity and Kornʼs inequality, Ann. of Math. 48 no. 2 (1947), 441-471 | MR 22750 | Zbl 0029.17002
,[5] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math. 55 (2002), 1461-1506 | MR 1916989 | Zbl 1021.74024
, , ,[6] A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence, Arch. Ration. Mech. Anal. 180 no. 2 (2006), 183-236 | MR 2210909 | Zbl 1100.74039
, , ,[7] Functional spaces for Norton–Hoff materials, Math. Methods Appl. Sci. 8 (1986), 206-222 | MR 845925 | Zbl 0616.73010
, ,[8] Asymptotic behaviour of curved rods by the unfolding method, Math. Methods Appl. Sci. 27 (2004), 2081-2110 | MR 2099819 | Zbl 1174.74313
,[9] Asymptotic behavior of structures made of plates, Anal. Appl. 3 (2005), 325-356 | MR 2181252 | Zbl 1111.74029
,[10] Decompositions of displacements of thin structures, J. Math. Pures Appl. 89 (2008), 199-223 | MR 2391647 | Zbl 1132.74029
,[11] Kornʼs inequalities and their applications in continuum mechanics, SIAM Rev. 37 no. 4 (1995), 491-511 | MR 1368384 | Zbl 0840.73010
,[12] Navier–Stokes equations in thin 3D domains with Navier boundary conditions, Indiana Univ. Math. J. 56 no. 3 (2007), 1083-1156 | MR 2333468 | Zbl 1129.35056
, , ,[13] Foundations of Differential Geometry, vol. 1, Interscience Publishers (1963) | MR 152974 | Zbl 0175.48504
, ,[14] A new model for thin plates with rapidly varying thickness. II: A convergence proof, Quart. Appl. Math. 43 (1985), 1-22 | MR 782253 | Zbl 0565.73046
, ,[15] Solution générale du problème dʼéquilibre dans la théorie de lʼélasticité dans le cas où les efforts sont donnés à la surface, Ann. Fac. Sci. Toulouse Ser. 2 10 (1908), 165-269 | JFM 39.0853.03 | MR 1508302
,[16] Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen, Bull. Int. Cracovie Akademie Umiejet, Classe des Sci. Math. Nat. (1909), 705-724 | JFM 40.0884.02
,[17] Weighted Sobolev Spaces, Wiley and Sons (1985) | MR 802206 | Zbl 0567.46009
,[18] On Kornʼs inequalities, C. R. Acad. Sci. Paris Ser. I 308 (1989), 483-487 | MR 995908
, ,[19] Riemannian Geometry, Springer (2006) | MR 2243772 | Zbl 1220.53002
,[20] Dynamics of partial differential equations on thin domains, CIME Course, Montecatini Terme, Lecture Notes in Math. vol. 1609, Springer-Verlag (1995), 208-315 | MR 1374110 | Zbl 0851.58038
,[21] Navier–Stokes equations on thin 3D domains. I: Global attractors and global regularity of solutions, J. Amer. Math. Soc. 6 (1993), 503-568 | MR 1179539 | Zbl 0787.34039
, ,[22] A certain boundary value problem for the stationary system of Navier–Stokes equations, Boundary Value Problems of Mathematical Physics, 8 Tr. Mat. Inst. Steklova 125 (1973), 196-210 | MR 364910 | Zbl 0313.35063
, ,[23] A Comprehensive Introduction to Differential Geometry, Publish or Perish Inc. (1979) | Zbl 0439.53001
,