In this paper we consider integral functionals of the form with convex integrand satisfying growth conditions. We prove local higher differentiability results for bounded minimizers of the functional under dimension-free conditions on the gap between the growth and the coercivity exponents.As a novel feature, the main results are achieved through uniform higher differentiability estimates for solutions to a class of auxiliary problems, constructed adding singular higher order perturbations to the integrand.
@article{AIHPC_2011__28_3_395_0, author = {Carozza, Menita and Kristensen, Jan and Passarelli di Napoli, Antonia}, title = {Higher differentiability of minimizers of convex variational integrals}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {28}, year = {2011}, pages = {395-411}, doi = {10.1016/j.anihpc.2011.02.005}, mrnumber = {2795713}, zbl = {1245.49052}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2011__28_3_395_0} }
Carozza, Menita; Kristensen, Jan; Passarelli di Napoli, Antonia. Higher differentiability of minimizers of convex variational integrals. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) pp. 395-411. doi : 10.1016/j.anihpc.2011.02.005. http://gdmltest.u-ga.fr/item/AIHPC_2011__28_3_395_0/
[1] Relaxation of convex functionals: The gap problem, Ann. I. H. Poincaré – AN 20 no. 3 (2003), 359-390 | Numdam | MR 1972867 | Zbl 1025.49012
, , ,[2] Partial regularity under anisotropic growth conditions, J. Differential Equations 107 (1994), 46-67 | MR 1260848 | Zbl 0807.49010
, ,[3] Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal. 156 (2001), 121-140 | MR 1814973 | Zbl 0984.49020
, ,[4] Convex Variational Problems. Linear, Nearly Linear and Anisotropic Growth Conditions, Lecture Notes in Math. vol. 1818, Springer-Verlag, Berlin (2003) | MR 1998189 | Zbl 1033.49001
,[5] Partial regularity for variational integrals with -growth, Calc. Var. Partial Differ. Eq. 13 (2001), 537-560 | MR 1867941 | Zbl 1018.49026
, ,[6] Partial regularity for a class of anisotropic variational integrals with convex hull property, Asymptot. Anal. 32 no. 3–4 (2002), 293-315 | MR 1993652 | Zbl 1076.49018
, ,[7] Higher integrability of the gradient for vectorial minimizers of decomposable variational integrals, Manuscripta Math. 123 (2007), 269-283 | MR 2314085 | Zbl 1120.49031
, ,[8] Variational integrals of splitting-type: higher integrability under general growth conditions, Ann. Mat. Pura Appl. (4) 188 no. 3 (2009), 467-496 | MR 2512159 | Zbl 1181.49035
, ,[9] Elliptic systems with nonlinearity q greater or equal to two. Regularity of the solution of the Dirichlet problem, Ann. Mat. Pura Appl. (4) 147 (1987), 117-150 | MR 916705 | Zbl 0635.35038
,[10] Interior behaviour of minimizers for certain functionals with nonstandard growth, Nonlinear Anal. Theory Methods Appl. 19 no. 10 (1992), 933-945 | MR 1192273 | Zbl 0786.35040
,[11] The existence of regular boundary points for non-linear elliptic systems, J. Reine Angew. Math. 602 (2007), 17-58 | MR 2300451 | Zbl 1214.35021
, , ,[12] Regularity for minimizers of functionals with growth, NoDEA Nonlinear Differ. Eq. Appl. 6 (1999), 133-148 | MR 1694803 | Zbl 0928.35044
, , ,[13] Higher integrability for minimizers of integral functionals with growth, J. Differential Equations 157 (1999), 414-438 | MR 1713266 | Zbl 0939.49021
, , ,[14] Regularity results for minimizers of irregular integrals with growth, Forum Mathematicum 14 (2002), 245-272 | MR 1880913 | Zbl 0999.49022
, , ,[15] Sharp regularity for functionals with growth, J. Differential Equations 204 no. 1 (2004), 5-55 | MR 2076158 | Zbl 1072.49024
, , ,[16] Regularity results for anisotropic image segmentation models, Ann. Sc. Norm. Super. Pisa 24 (1997), 463-499 | Numdam | MR 1612389 | Zbl 0899.49018
, ,[17] Local boundedness of minimizers in a limit case, Manuscripta Math. 69 (1990), 19-25 | MR 1070292 | Zbl 0722.49012
, ,[18] Higher integrability of the gradient of minimizers of functionals with nonstandard growth conditions, Comm. Pure Appl. Math. 43 (1990), 673-683 | MR 1057235 | Zbl 0727.49021
, ,[19] Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Math. Studies vol. 105, Princeton Univ. Press (1983) | MR 717034 | Zbl 0516.49003
,[20] Growth conditions and regularity, a counterexample, Manuscripta Math. 59 (1987), 245-248 | MR 905200 | Zbl 0638.49005
,[21] Direct Methods in the Calculus of Variations, World Scientific (2003) | MR 1962933 | Zbl 1028.49001
,[22] Some remarks on the minimizers of variational integrals with nonstandard growth conditions, Boll. Un. Mat. Ital. A (7) 6 (1992), 91-101 | MR 1164739 | Zbl 0768.49022
,[23] Regularity in oscillatory nonlinear elliptic systems, Math. Z. 260 (2008), 813-847 | MR 2443332 | Zbl 1158.35037
, ,[24] The singular set of ω-minima, Arch. Ration. Mech. Anal. 177 (2005), 93-114 | MR 2187315 | Zbl 1082.49036
, ,[25] The singular set of minima of integral functionals, Arch. Ration. Mech. Anal. 180 (2006), 331-398 | MR 2214961 | Zbl 1116.49010
, ,[26] Boundary regularity in variational problems, Arch. Ration. Mech. Anal. 198 (2010), 369-455 | MR 2721587 | Zbl 1228.49043
, ,[27] Maximum principles for vector-valued minimizers of some integral functionals, Boll. Un. Mat. Ital. A (6) 5 (1991), 51-56 | MR 1101010 | Zbl 0729.49015
,[28] On the definition and the lower semicontinuity of certain quasiconvex integrals, Ann. I. H. Poincaré – AN 3 (1986), 391-409 | Numdam | MR 868523 | Zbl 0609.49009
,[29] P. Marcellini, Un example de solution discontinue dʼun probéme variationel dans le cas scalaire, preprint, Ist. U. Dini, Firenze, 1987–1988.
[30] Regularity of minimizers of integrals of the calculus of variations with non-standard growth conditions, Arch. Ration. Mech. Anal. 105 (1989), 267-284 | MR 969900 | Zbl 0667.49032
,[31] Regularity and existence of solutions of elliptic equations with growth conditions, J. Differential Equations 90 (1991), 1-30 | MR 1094446 | Zbl 0724.35043
,[32] Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Sc. Norm. Super. Pisa Cl. Sci. 23 (1996), 1-25 | Numdam | MR 1401415 | Zbl 0922.35031
,[33] Nonlinear elliptic systems with general growth, J. Differential Equations 221 (2006), 412-443 | MR 2196484 | Zbl 1330.35131
, ,[34] A regularity result for a class of anisotropic systems, Rend. Ist. Mat di Trieste (1997), 13-31 | MR 1463906 | Zbl 0909.49026
, ,[35] A sharp nonlinear Gagliardo–Nirenberg-type estimate and applications to the regularity of elliptic systems, Comm. Part. Diff. Eq. 30 (2005), 589-604 | MR 2153509 | Zbl 1157.35376
, ,[36] Regularity of minimizers of -quasiconvex variational integrals with -growth, Calc. Var. 32 (2008), 1-24 | MR 2377404 | Zbl 1138.49034
,[37] Non-Lipschitz minimizers of smooth uniformly convex variational integrals, Proc. Natl. Acad. Sci. USA 99 (2002), 15269-15276 | MR 1946762 | Zbl 1106.49046
, ,[38] On Lavrentievʼs phenomenon, Russian J. Math. Phys. 3 (1995), 249-269 | MR 1350506
,[39] On some variational problems, Russian J. Math. Phys. 5 (1997), 105-116 | MR 1486765 | Zbl 0917.49006
,[40] Weakly Differentiable Functions, Grad. Texts in Math. vol. 120, Springer-Verlag (1989) | MR 1014685 | Zbl 0177.08006
,