Orbital stability of semitrivial standing waves for the Klein–Gordon–Schrödinger system
Kikuchi, Hiroaki
Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011), p. 315-323 / Harvested from Numdam

In the present paper, we study the orbital stability and instability of standing waves of the Klein–Gordon–Schrödinger system. Especially, we are interested in a standing wave which is expressed by the unique positive solution w 1 to a certain scalar field equation. By utilizing the property of the positive solution w 1 , we can apply the general theory of Grillakis, Shatah and Strauss (1987) [11] and show the stability and instability of the standing wave.

@article{AIHPC_2011__28_2_315_0,
     author = {Kikuchi, Hiroaki},
     title = {Orbital stability of semitrivial standing waves for the Klein--Gordon--Schr\"odinger system},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {28},
     year = {2011},
     pages = {315-323},
     doi = {10.1016/j.anihpc.2011.02.003},
     mrnumber = {2784074},
     zbl = {1216.35116},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_2011__28_2_315_0}
}
Kikuchi, Hiroaki. Orbital stability of semitrivial standing waves for the Klein–Gordon–Schrödinger system. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) pp. 315-323. doi : 10.1016/j.anihpc.2011.02.003. http://gdmltest.u-ga.fr/item/AIHPC_2011__28_2_315_0/

[1] J. Angulo, F. Linares, Periodic pulses of coupled nonlinear Schrödinger equations in optics, Indiana Univ. Math. J. 56 (2007), 847-877 | MR 2317548 | Zbl 1130.78006

[2] A. Bachelot, Problème de Cauchy pour des systèmes hyperboliques semi-linéaires, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 453-478 | Numdam | MR 778979 | Zbl 0566.35068

[3] J.B. Baillon, J.M. Chadam, The Cauchy problem for the coupled Klein–Gordon–Schrödinger equations, Contemporary Developments in Continuum Mechanics and Partial Differential Equations, North-Holland, Amsterdam (1978), 37-44 | MR 519635 | Zbl 0404.35084

[4] H. Berestycki, T. Cazenave, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon nonlinéaires, C. R. Acad. Sci. Paris 293 (1981), 489-492 | MR 646873 | Zbl 0492.35010

[5] H. Berestycki, P.L. Lions, Nonlinear scalar field equation I, Arch. Rat. Mech. Anal. 82 (1983), 313-346 | MR 695535

[6] T. Cazenave, P.L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85 (1982), 549-561 | MR 677997 | Zbl 0513.35007

[7] I. Fukuda, M. Tsutsumi, On coupled Klein–Gordon–Schrödinger equations II, J. Math. Anal. Appl. 66 (1978), 358-378 | MR 515899 | Zbl 0396.35082

[8] B. Gidas, W.M. Ni, L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in R n , Adv. Math. Suppl. Stud. vol. 7A, Academic Press (1981), 369-402 | MR 634248

[9] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer (1983) | MR 737190 | Zbl 0691.35001

[10] M. Grillakis, Linearized instability for nonlinear Schrödinger and Klein–Gordon equations, Comm. Pure Appl. Math. 41 (1988), 747-774 | MR 948770 | Zbl 0632.70015

[11] M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal. 74 (1987), 160-197 | MR 901236 | Zbl 0656.35122

[12] A. Grünrock, H. Pecher, Bounds in time for the Klein–Gordon–Schrödinger and the Zakharov systems, Hokkaido Math. J. 35 (2006), 139-153 | MR 2225086 | Zbl 1105.35115

[13] N. Hayashi, W. Von Wahl, On the global strong solutions of coupled Klein–Gordon–Schrödinger equations, J. Math. Soc. Japan 39 (1987), 489-497 | MR 900982 | Zbl 0657.35034

[14] H. Kikuchi, M. Ohta, Instability of standing waves for the Klein–Gordon–Schrödinger system, Hokkaido Math. J. 37 (2008), 735-748 | MR 2474173 | Zbl 1173.35688

[15] H. Kikuchi, M. Ohta, Stability of standing waves for the Klein–Gordon–Schrödinger system, J. Math. Anal. Appl. 365 (2010), 109-114 | MR 2585081 | Zbl 1184.35046

[16] M. Kwong, Uniqueness of positive solutions of Δu-u+u p =0 in R n , Arch. Rat. Mech. Anal. 105 (1989), 243-266 | MR 969899 | Zbl 0676.35032

[17] W.-M. Ni, I. Takagi, Locating the peaks of least-energy solution to a semilinear Neumann problem, Duke Math. J. 70 (1993), 247-281 | MR 1219814 | Zbl 0796.35056

[18] H. Pecher, Global solutions of the Klein–Gordon–Schrödinger system with rough data, Differential Integral Equations 17 (2004), 179-214 | MR 2035502 | Zbl 1164.35511

[19] J. Shatah, Stable standing waves of nonlinear Klein–Gordon equations, Comm. Math. Phys. 91 (1983), 313-327 | MR 723756 | Zbl 0539.35067

[20] J. Shatah, W. Strauss, Instability of nonlinear bound states, Comm. Math. Phys. 100 (1985), 173-190 | MR 804458 | Zbl 0603.35007

[21] M. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1982/1983), 567-576 | MR 691044 | Zbl 0527.35023

[22] M. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Appl. Math. 16 (1985), 472-490 | MR 783974 | Zbl 0583.35028

[23] A.I. Yew, Stability analysis of multipulses in nonlinearly-coupled Schödinger equations, Indiana Univ. Math. J. 49 (2000), 1079-1124 | MR 1803222 | Zbl 0978.35057