On the large-distance asymptotics of steady state solutions of the Navier–Stokes equations in 3D exterior domains
Korolev, A. ; Šverák, V.
Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011), p. 303-313 / Harvested from Numdam

We identify the leading term describing the behavior at large distances of the steady state solutions of the Navier–Stokes equations in 3D exterior domains with vanishing velocity at the spatial infinity.

@article{AIHPC_2011__28_2_303_0,
     author = {Korolev, A. and \v Sver\'ak, V.},
     title = {On the large-distance asymptotics of steady state solutions of the Navier--Stokes equations in 3D exterior domains},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {28},
     year = {2011},
     pages = {303-313},
     doi = {10.1016/j.anihpc.2011.01.003},
     mrnumber = {2784073},
     zbl = {1216.35090},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_2011__28_2_303_0}
}
Korolev, A.; Šverák, V. On the large-distance asymptotics of steady state solutions of the Navier–Stokes equations in 3D exterior domains. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) pp. 303-313. doi : 10.1016/j.anihpc.2011.01.003. http://gdmltest.u-ga.fr/item/AIHPC_2011__28_2_303_0/

[1] C.J. Amick, On Lerayʼs problem of steady Navier–Stokes flow past a body in the plane, Acta Math. 161 (1988), 71-130 | MR 962096 | Zbl 0682.76027

[2] K.I. Babenko, On stationary solutions of the problem of flow past a body of a viscous incompressible fluid, Mat. Sb. 91 no. 133 (1973), 3-25, Math. SSSR Sb. 20 (1973), 1-25 | MR 348301 | Zbl 0285.76009

[3] M.E. Bogovskii, Solution of some vector analysis problems connected with operators div and grad, Trudy Sem. S.L. Sobolev 80 no. 1 (1980), 5-40 | MR 631691

[4] M. Cannone, G. Karch, Smooth or singular solutions to the Navier–Stokes system?, J. Differential Equations 197 no. 2 (2004), 247-274 | MR 2034160 | Zbl 1042.35043

[5] P. Deuring, G.P. Galdi, On the asymptotic behavior of physically reasonable solutions to the stationary Navier–Stokes system in three-dimensional exterior domains with zero velocity at infinity, J. Math. Fluid Mech. 2 no. 4 (2000), 353-364 | MR 1814222 | Zbl 0973.76022

[6] R. Finn, On the exterior stationary problem for the Navier–Stokes equations, and associated perturbation problems, Arch. Ration. Mech. Anal. 19 (1965), 363-406 | MR 182816 | Zbl 0149.44606

[7] G.P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations, Volumes I and II, Springer (1994) | MR 1284206

[8] L.D. Landau, A new exact solution of the Navier–Stokes equations, Dokl. Akad. Nauk SSSR 43 (1944), 299 | MR 11205

[9] L.D. Landau, E.M. Lifschitz, Fluid Mechanics, Butterworth–Heinemann (2000) | Zbl 0997.70501

[10] J. Leray, Etude de diverses équations intégrales non linéaires et de quelques problèmes que pose lʼhydrodynamique, J. Math. Pures Appl. 12 (1933), 1-82 | MR 3533002 | Zbl 0006.16702

[11] S.A. Nazarov, K. Pileckas, On steady Stokes and Navier–Stokes problems with zero velocity at infinity in a three-dimensional exterior domain, J. Math. Kyoto Univ. 40 no. 3 (2000), 475-492 | MR 1794517 | Zbl 0976.35051

[12] P. Plecháč, V. Šverák, Singular and regular solutions of a nonlinear parabolic system, Nonlinearity 16 no. 6 (2003), 2083-2097 | MR 2012858 | Zbl 1120.35047

[13] V. Šverák, On Landauʼs solutions of the Navier–Stokes equations, arXiv:math/0604550 (2006) | MR 3014106

[14] V. Šverák, T.P. Tsai, On the spatial decay of 3-D steady-state Navier–Stokes flows, Comm. Partial Differential Equations 25 no. 11–12 (2000), 2107-2117 | MR 1789922 | Zbl 0971.35059

[15] G. Tian, Z. Xin, One-point singular solutions to the Navier–Stokes equations, Topol. Methods Nonlinear Anal. 11 no. 1 (1998), 135-145 | MR 1642049 | Zbl 0923.35121