We identify the leading term describing the behavior at large distances of the steady state solutions of the Navier–Stokes equations in 3D exterior domains with vanishing velocity at the spatial infinity.
@article{AIHPC_2011__28_2_303_0, author = {Korolev, A. and \v Sver\'ak, V.}, title = {On the large-distance asymptotics of steady state solutions of the Navier--Stokes equations in 3D exterior domains}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {28}, year = {2011}, pages = {303-313}, doi = {10.1016/j.anihpc.2011.01.003}, mrnumber = {2784073}, zbl = {1216.35090}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2011__28_2_303_0} }
Korolev, A.; Šverák, V. On the large-distance asymptotics of steady state solutions of the Navier–Stokes equations in 3D exterior domains. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) pp. 303-313. doi : 10.1016/j.anihpc.2011.01.003. http://gdmltest.u-ga.fr/item/AIHPC_2011__28_2_303_0/
[1] On Lerayʼs problem of steady Navier–Stokes flow past a body in the plane, Acta Math. 161 (1988), 71-130 | MR 962096 | Zbl 0682.76027
,[2] On stationary solutions of the problem of flow past a body of a viscous incompressible fluid, Mat. Sb. 91 no. 133 (1973), 3-25, Math. SSSR Sb. 20 (1973), 1-25 | MR 348301 | Zbl 0285.76009
,[3] Solution of some vector analysis problems connected with operators div and grad, Trudy Sem. S.L. Sobolev 80 no. 1 (1980), 5-40 | MR 631691
,[4] Smooth or singular solutions to the Navier–Stokes system?, J. Differential Equations 197 no. 2 (2004), 247-274 | MR 2034160 | Zbl 1042.35043
, ,[5] On the asymptotic behavior of physically reasonable solutions to the stationary Navier–Stokes system in three-dimensional exterior domains with zero velocity at infinity, J. Math. Fluid Mech. 2 no. 4 (2000), 353-364 | MR 1814222 | Zbl 0973.76022
, ,[6] On the exterior stationary problem for the Navier–Stokes equations, and associated perturbation problems, Arch. Ration. Mech. Anal. 19 (1965), 363-406 | MR 182816 | Zbl 0149.44606
,[7] An Introduction to the Mathematical Theory of the Navier–Stokes Equations, Volumes I and II, Springer (1994) | MR 1284206
,[8] A new exact solution of the Navier–Stokes equations, Dokl. Akad. Nauk SSSR 43 (1944), 299 | MR 11205
,[9] Fluid Mechanics, Butterworth–Heinemann (2000) | Zbl 0997.70501
, ,[10] Etude de diverses équations intégrales non linéaires et de quelques problèmes que pose lʼhydrodynamique, J. Math. Pures Appl. 12 (1933), 1-82 | MR 3533002 | Zbl 0006.16702
,[11] On steady Stokes and Navier–Stokes problems with zero velocity at infinity in a three-dimensional exterior domain, J. Math. Kyoto Univ. 40 no. 3 (2000), 475-492 | MR 1794517 | Zbl 0976.35051
, ,[12] Singular and regular solutions of a nonlinear parabolic system, Nonlinearity 16 no. 6 (2003), 2083-2097 | MR 2012858 | Zbl 1120.35047
, ,[13] On Landauʼs solutions of the Navier–Stokes equations, arXiv:math/0604550 (2006) | MR 3014106
,[14] On the spatial decay of 3-D steady-state Navier–Stokes flows, Comm. Partial Differential Equations 25 no. 11–12 (2000), 2107-2117 | MR 1789922 | Zbl 0971.35059
, ,[15] One-point singular solutions to the Navier–Stokes equations, Topol. Methods Nonlinear Anal. 11 no. 1 (1998), 135-145 | MR 1642049 | Zbl 0923.35121
, ,