We deal with a nonconvex and nonlocal variational problem coming from thin-film micromagnetics. It consists in a free-energy functional depending on two small parameters ε and η and defined over vector fields that are tangent at the boundary ∂Ω. We are interested in the behavior of minimizers as . They tend to be in-plane away from a region of length scale ε (generically, an interior vortex ball or two boundary vortex balls) and of vanishing divergence, so that -transition layers of length scale η (Néel walls) are enforced by the boundary condition. We first prove an upper bound for the minimal energy that corresponds to the cost of a vortex and the configuration of Néel walls associated to the viscosity solution, so-called Landau state. Our main result concerns the compactness of vector fields of energies close to the Landau state in the regime where a vortex is energetically more expensive than a Néel wall. Our method uses techniques developed for the Ginzburg–Landau type problems for the concentration of energy on vortex balls, together with an approximation argument of -vector fields by -vector fields away from the vortex balls.
@article{AIHPC_2011__28_2_247_0,
author = {Ignat, Radu and Otto, Felix},
title = {A compactness result for Landau state in thin-film micromagnetics},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
volume = {28},
year = {2011},
pages = {247-282},
doi = {10.1016/j.anihpc.2011.01.001},
mrnumber = {2784071},
zbl = {1216.49041},
language = {en},
url = {http://dml.mathdoc.fr/item/AIHPC_2011__28_2_247_0}
}
Ignat, Radu; Otto, Felix. A compactness result for Landau state in thin-film micromagnetics. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) pp. 247-282. doi : 10.1016/j.anihpc.2011.01.001. http://gdmltest.u-ga.fr/item/AIHPC_2011__28_2_247_0/
[1] , , , Ginzburg–Landau Vortices, Progr. Nonlinear Differential Equations Appl. vol. 13, Birkhäuser Boston Inc., Boston, MA (1994) | MR 1269538 | Zbl 0802.35142
[2] , , Degree theory and BMO. I. Compact manifolds without boundaries, Selecta Math. (N.S.) 1 no. 2 (1995), 197-263 | MR 1354598 | Zbl 0852.58010
[3] , , Analyse mathématique et calcul numérique pour les sciences et les techniques, INSTN: Collection Enseignement vol. 6, Masson, Paris (1988) | MR 1016606 | Zbl 0652.45001
[4] , Hysteresis and imperfection sensitivity in small ferromagnetic particles, Microstructure and Phase Transitions in Solids Udine, 1994 Meccanica 30 no. 5 (1995), 591-603 | MR 1360973 | Zbl 0836.73060
[5] , , , 2-D stability of the Néel wall, Calc. Var. Partial Differential Equations 27 (2006), 233-253 | MR 2251994 | Zbl 1158.78300
[6] , , , , A reduced theory for thin-film micromagnetics, Comm. Pure Appl. Math. 55 (2002), 1408-1460 | MR 1916988 | Zbl 1027.82042
[7] , , , , Recent analytical developments in micromagnetics, , (ed.), The Science of Hysteresis, vol. 2, Elsevier, Academic Press (2005), 269-381 | MR 2307929 | Zbl 1151.35426
[8] , A Γ-convergence result for Néel walls in micromagnetics, Calc. Var. Partial Differential Equations 36 no. 2 (2009), 285-316 | MR 2546029 | Zbl 1175.49014
[9] , A survey of some new results in ferromagnetic thin films, Séminaire: Équations aux Dérivées Partielles, 2007–2008, Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau (2009) | Numdam | MR 2532942 | Zbl 1180.35497
[10] , , Vortex energy and 360°-Néel walls in thin-film micromagnetics, Comm. Pure Appl. Math. 63 (2010), 1677-1724 | MR 2742010 | Zbl 1200.49046
[11] , , A compactness result in thin-film micromagnetics and the optimality of the Néel wall, J. Eur. Math. Soc. (JEMS) 10 no. 4 (2008), 909-956 | MR 2443924 | Zbl 1158.78011
[12] , Lower bounds for generalized Ginzburg–Landau functionals, SIAM J. Math. Anal. 30 no. 4 (1999), 721-746 | MR 1684723 | Zbl 0928.35045
[13] , , Another thin-film limit of micromagnetics, Arch. Ration. Mech. Anal. 178 no. 2 (2005), 227-245 | MR 2186425 | Zbl 1074.78012
[14] , Boundary vortices in thin magnetic films, Calc. Var. Partial Differential Equations 26 no. 1 (2006), 1-28 | MR 2214879 | Zbl 1151.35006
[15] , Vortex dynamics for the nonlinear wave equation, Comm. Pure Appl. Math. 52 (1999), 737-761 | MR 1676761
[16] , Ginzburg–Landau vortices for thin ferromagnetic films, AMRX Appl. Math. Res. Express 1 (2003), 1-32 | MR 2003111 | Zbl 1057.35070
[17] , Cross-over in scaling laws: a simple example from micromagnetics, Proceedings of the International Congress of Mathematicians, vol. III, Beijing, 2002, Higher Ed. Press, Beijing (2002), 829-838 | MR 1957583 | Zbl 1067.74020
[18] , Lower bounds for the energy of unit vector fields and applications, J. Funct. Anal. 152 (1998), 379-403 | MR 1607928 | Zbl 0908.58004
[19] , , Vortices in the Magnetic Ginzburg–Landau Model, Progr. Nonlinear Differential Equations Appl. vol. 70, Birkhäuser Boston Inc., Boston, MA (2007) | MR 2279839 | Zbl 1112.35002