Je présente un théorème d'inversion pour des applications différentiables entre espaces de Fréchet, qui contient le théorème classique de Nash et Moser. Contrairement à ce dernier, la démonstration donnée ici ne repose pas sur l'algorithme itératif de Newton, mais sur le théorème de convergence dominée de Lebesgue et le principe variationnel d'Ekeland. Comme conséquence, les hypothèses sont substantiellement affaiblies : on ne demande pas que l'application F à inverser soit de classe , ni même , ni même différentiable au sens de Fréchet.
I present an inverse function theorem for differentiable maps between Fréchet spaces which contains the classical theorem of Nash and Moser as a particular case. In contrast to the latter, the proof does not rely on the Newton iteration procedure, but on Lebesgue's dominated convergence theorem and Ekeland's variational principle. As a consequence, the assumptions are substantially weakened: the map F to be inverted is not required to be , or even , or even Fréchet-differentiable.
@article{AIHPC_2011__28_1_91_0, author = {Ekeland, Ivar}, title = {An inverse function theorem in Fr\'echet spaces}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {28}, year = {2011}, pages = {91-105}, doi = {10.1016/j.anihpc.2010.11.001}, mrnumber = {2765512}, zbl = {1256.47037}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2011__28_1_91_0} }
Ekeland, Ivar. An inverse function theorem in Fréchet spaces. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) pp. 91-105. doi : 10.1016/j.anihpc.2010.11.001. http://gdmltest.u-ga.fr/item/AIHPC_2011__28_1_91_0/
[1] Opérateurs Pseudo-différentiels et Théorème de Nash–Moser, Interéditions et Éditions du CNRS, Paris (1991), Grad. Stud. Math. vol. 82, Amer. Math. Soc., Rhode Island (2000) | MR 1172111 | Zbl 0791.47044
, ,[2] Small divisors, Dokl. Akad. Nauk CCCP 137 (1961), 255-257, Dokl. Akad. Nauk CCCP 138 (1961), 13-15 | MR 132887
,[3] Small divisors I, Izvestia Akad. Nauk CCCP 25 (1961), 21-86
,[4] Small divisors II, Ouspekhi Math. Nauk 18 (1963), 81-192
,[5] Sobolev periodic solutions of nonlinear wave equations in higher spatial dimensions, Arch. Ration. Mech. Anal. 195 (2010), 609-642 | MR 2592290 | Zbl 1186.35113
, ,[6] Duality and Perturbation Methods in Critical Point Theory, Cambridge Tracts in Math. vol. 107, Cambridge Univ. Press (1993) | MR 1251958 | Zbl 0790.58002
,[7] Sur les problèmes variationnels, C. R. Acad. Sci. Paris 275 (1972), 1057-1059, C. R. Acad. Sci. Paris 276 (1973), 1347-1348 | MR 326545 | Zbl 0249.49004
,[8] Nonconvex minimization problems, Bull. Amer. Math. Soc. 1 (1979), 443-474 | MR 526967 | Zbl 0441.49011
,[9] The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (1) 7 (1982), 65-222 | MR 656198 | Zbl 0499.58003
,[10] On the conservation of quasi-periodic motion for a small variation of the Hamiltonian function, Dokl. Akad. Nauk CCCP 98 (1954), 527-530 | MR 68687
,[11] A new technique for the construction of solutions of nonlinear differential equations, Proc. Natl. Acad. Sci. USA 47 (1961), 1824-1831 | MR 132859 | Zbl 0104.30503
,[12] A rapidly convergent iteration method and nonlinear differential equations, Ann. Scuola Norm. Sup. Pisa 20 (1966), 266-315 | Numdam | MR 199523 | Zbl 0144.18202
,[13] The imbedding problem for Riemannian manifolds, Ann. of Math. (2) 63 (1956), 20-63 | MR 75639 | Zbl 0070.38603
,[14] Conjugate Duality and Optimization, SIAM/CBMS Monograph Ser. vol. 16, SIAM Publications (1974) | MR 373611 | Zbl 0326.49008
,[15] On Nash's implicit functional theorem, Comm. Pure Appl. Math. 13 (1960), 509-530 | MR 114144 | Zbl 0178.51002
,