We consider non-linear parabolic evolution equations of the form , subject to noise of the form where H is linear in Du and denotes the Stratonovich differential of a multi-dimensional Brownian motion. Motivated by the essentially pathwise results of [P.-L. Lions, P.E. Souganidis, Fully nonlinear stochastic partial differential equations, C. R. Acad. Sci. Paris Sér. I Math. 326 (9) (1998) 1085–1092] we propose the use of rough path analysis [T.J. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14 (2) (1998) 215–310] in this context. Although the core arguments are entirely deterministic, a continuity theorem allows for various probabilistic applications (limit theorems, support, large deviations, …).
@article{AIHPC_2011__28_1_27_0, author = {Caruana, Michael and Friz, Peter K. and Oberhauser, Harald}, title = {A (rough) pathwise approach to a class of non-linear stochastic partial differential equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {28}, year = {2011}, pages = {27-46}, doi = {10.1016/j.anihpc.2010.11.002}, mrnumber = {2765508}, zbl = {1219.60061}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2011__28_1_27_0} }
Caruana, Michael; Friz, Peter K.; Oberhauser, Harald. A (rough) pathwise approach to a class of non-linear stochastic partial differential equations. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) pp. 27-46. doi : 10.1016/j.anihpc.2010.11.002. http://gdmltest.u-ga.fr/item/AIHPC_2011__28_1_27_0/
[1] Solutions de viscosité des équations de Hamilton–Jacobi, Springer (2004) | MR 1613876
,[2] Uniqueness results for quasilinear parabolic equations through viscosity solutions' methods, Calc. Var. Partial Differential Equations 18 no. 2 (2003), 159-179 | MR 2010963 | Zbl 1036.35001
, , , ,[3] A geometrical approach to the study of unbounded solutions of quasilinear parabolic equations, Arch. Ration. Mech. Anal. 162 no. 4 (2002), 287-325 | MR 1904498 | Zbl 1052.35084
, , ,[4] From random walks to rough paths, Proc. Amer. Math. Soc. 137 (2009), 3487-3496 | MR 2515418 | Zbl 1179.60017
, , ,[5] Almost sure approximation of Wong–Zakai type for stochastic partial differential equations, Stochastic Process. Appl. 55 no. 2 (1995), 329-358 | MR 1313027 | Zbl 0842.60062
, ,[6] Stochastic viscosity solutions for nonlinear stochastic partial differential equations. I, Stochastic Process. Appl. 93 no. 2 (2001), 181-204 | MR 1828772 | Zbl 1053.60065
, ,[7] Stochastic viscosity solutions for nonlinear stochastic partial differential equations. II, Stochastic Process. Appl. 93 no. 2 (2001), 205-228 | MR 1831830 | Zbl 1053.60066
, ,[8] Pathwise stochastic Taylor expansions and stochastic viscosity solutions for fully nonlinear stochastic PDEs, Ann. Probab. 30 no. 3 (2002), 1131-1171 | MR 1920103 | Zbl 1017.60061
, ,[9] Pathwise stochastic control problems and stochastic HJB equations, SIAM J. Control Optim. 45 no. 6 (2007), 2224-2256 | MR 2285722 | Zbl 1140.60031
, ,[10] Good rough path sequences and applications to anticipating stochastic calculus, Ann. Probab. 35 no. 3 (2007), 1172-1193 | MR 2319719 | Zbl 1132.60053
, , ,[11] Stochastic analysis, rough path analysis and fractional Brownian motions, Probab. Theory Related Fields 122 no. 1 (2002), 108-140 | MR 1883719 | Zbl 1047.60029
, ,[12] Viscosity Solutions: A Primer, Lecture Notes in Math. vol. 1660 (1995) | MR 1462699 | Zbl 0901.49026
,[13] User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 no. 1 (1992), 1-67 | Zbl 0755.35015
, , ,[14] A deterministic approach to stochastic optimal control with application to anticipative control, Stoch. Stoch. Rep. 40 no. 3–4 (1992), 203-256 | MR 1275134 | Zbl 0774.93085
, ,[15] Controlled Markov Processes and Viscosity Solutions, Stoch. Model. Appl. Probab. vol. 25, Springer, New York (2006) | MR 2179357 | Zbl 1105.60005
, ,[16] Lévy's area under conditioning, Ann. Inst. H. Poincaré Probab. Statist. 42 no. 1 (2006), 89-101 | Numdam | MR 2196973 | Zbl 1099.60054
, , ,[17] Rough path limits of the Wong–Zakai type with a modified drift term, J. Funct. Anal. 256 (2009), 3236-3256 | MR 2504524 | Zbl 1169.60011
, ,[18] Differential equations driven by Gaussian signals, Ann. Inst. H. Poincaré Probab. Statist. 46 no. 2 (2010), 369-413 | Numdam | MR 2667703 | Zbl 1202.60058
, ,[19] Approximations of the Brownian rough path with applications to stochastic analysis, Ann. Inst. H. Poincaré Probab. Statist. 41 no. 4 (2005), 703-724 | Numdam | MR 2144230 | Zbl 1080.60021
, ,[20] On uniformly subelliptic operators and stochastic area, Probab. Theory Related Fields 142 no. 3–4 (2008), 475-523 | MR 2438699 | Zbl 1151.31009
, ,[21] Multidimensional Stochastic Processes as Rough Paths: Theory and Applications, Cambridge Stud. Adv. Math. vol. 120, Cambridge University Press, Cambridge (2010) | MR 2604669 | Zbl 1193.60053
, ,[22] Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains, Indiana Univ. Math. J. 40 no. 2 (1991), 443-470 | MR 1119185 | Zbl 0836.35009
, , , ,[23] The stability of stochastic partial differential equations and applications. I, Stoch. Stoch. Rep. 27 no. 2 (1989), 129-150 | MR 1011658 | Zbl 0726.60060
,[24] The stability of stochastic partial differential equations and applications. Theorems on supports, Stochastic Partial Differential Equations and Applications, II, Trento, 1988, Lecture Notes in Math. vol. 1390, Springer, Berlin (1989), 91-118 | MR 1019596 | Zbl 0683.93092
,[25] The stability of stochastic partial differential equations. II, Stoch. Stoch. Rep. 27 no. 3 (1989), 189-233 | MR 1008230 | Zbl 0726.60061
,[26] The approximation of stochastic partial differential equations and applications in nonlinear filtering, Comput. Math. Appl. 19 no. 1 (1990), 47-63 | MR 1026781 | Zbl 0711.60053
,[27] On stochastic partial differential equations. Results on approximations, Topics in Stochastic Systems: Modelling, Estimation and Adaptive Control, Lecture Notes in Control and Inform. Sci. vol. 161, Springer, Berlin (1991), 116-136 | MR 1140746 | Zbl 0791.60046
,[28] On Wong–Zakai approximations with δ-martingales, Stochastic Analysis with Applications to Mathematical Finance Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 no. 2041 (2004), 309-324 | MR 2052265 | Zbl 1055.60056
, ,[29] Rate of convergence of Wong–Zakai approximations for stochastic partial differential equations, Appl. Math. Optim. 54 no. 3 (2006), 315-341 | MR 2268661 | Zbl 1106.60050
, ,[30] A pathwise solution for nonlinear parabolic equations with stochastic perturbations, Cent. Eur. J. Math. 1 no. 3 (2003), 367-381 | MR 1992898 | Zbl 1031.35156
, ,[31] Backward stochastic differential equations and partial differential equations with quadratic growth, Ann. Probab. 28 no. 2 (2000), 558-602 | MR 1782267 | Zbl 1044.60045
,[32] Stochastic Flows and Stochastic Differential Equations, Cambridge Stud. Adv. Math. vol. 24, Cambridge University Press, Cambridge (1997) | MR 1472487 | Zbl 0865.60043
,[33] Large deviations and support theorem for diffusion processes via rough paths, Stochastic Process. Appl. 102 no. 2 (2002), 265-283 | MR 1935127 | Zbl 1075.60510
, , ,[34] Viscosity solutions of fully nonlinear stochastic partial differential equations, Viscosity Solutions of Differential Equations and Related Topics Kyoto, 2001 Sūrikaisekikenkyūsho Kōkyūroku 1287 (2002), 58-65 | MR 1959710
, ,[35] Fully nonlinear stochastic partial differential equations, C. R. Acad. Sci. Paris Sér. I Math. 326 no. 9 (1998), 1085-1092 | MR 1647162 | Zbl 1002.60552
, ,[36] Fully nonlinear stochastic partial differential equations: non-smooth equations and applications, C. R. Acad. Sci. Paris Sér. I Math. 327 no. 8 (1998), 735-741 | MR 1659958 | Zbl 0924.35203
, ,[37] Fully nonlinear stochastic PDE with semilinear stochastic dependence, C. R. Acad. Sci. Paris Sér. I Math. 331 no. 8 (2000), 617-624 | MR 1799099 | Zbl 0966.60058
, ,[38] Uniqueness of weak solutions of fully nonlinear stochastic partial differential equations, C. R. Acad. Sci. Paris Sér. I Math. 331 no. 10 (2000), 783-790 | MR 1807189 | Zbl 0970.60072
, ,[39] Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14 no. 2 (1998), 215-310 | MR 1654527 | Zbl 0923.34056
,[40] Flow of diffeomorphisms induced by a geometric multiplicative functional, Probab. Theory Related Fields 112 no. 1 (1998), 91-119 | MR 1646428 | Zbl 0918.60009
, ,[41] System Control and Rough Paths, Oxford Math. Monogr., Oxford University Press (2002) | MR 2036784 | Zbl 1029.93001
, ,[42] Differential equations driven by rough paths, Lectures from the 34th Summer School on Probability Theory Held in Saint-Flour, July 6–24, 2004, With an Introduction Concerning the Summer School by Jean Picard, Lecture Notes in Math. vol. 1908, Springer, Berlin (2007) | MR 2314753 | Zbl 1176.60002
, , ,[43] The Malliavin Calculus and Related Topics, Probab. Appl. (N. Y.), Springer-Verlag, Berlin (2006) | MR 2200233 | Zbl 1099.60003
,[44] Stochastic partial differential equations and filtering of diffusion processes, Stochastics 3 no. 2 (1979), 127-167 | MR 553909 | Zbl 0424.60067
,[45] Backward doubly stochastic differential equations and systems of quasilinear SPDEs, Probab. Theory Related Fields 98 no. 2 (1994), 209-227 | MR 1258986 | Zbl 0792.60050
, ,[46] Evolyutsionnye stokhasticheskie sistemy, Lineinaya teoriya i prilozkheniya k statistike sluchainykh protsessov, Nauka, Moscow (1983)
,[47] Some results on stochastic partial differential equations by the stochastic characteristics method, Stoch. Anal. Appl. 6 no. 2 (1988), 217-230 | MR 940902 | Zbl 0647.60070
,[48] An approximation theorem of Wong–Zakai type for nonlinear stochastic partial differential equations, Stoch. Anal. Appl. 13 no. 5 (1995), 601-626 | MR 1353194 | Zbl 0839.60059
,