On the energy exchange between resonant modes in nonlinear Schrödinger equations
[Echange d'énergie entre modes résonants dans une équation de Schrödinger non linéaire cubique]
Grébert, Benoît ; Villegas-Blas, Carlos
Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011), p. 127-134 / Harvested from Numdam

Nous considérons l'équation de Schödinger non linéaire iψ t =-ψ xx ±2 cos 2x|ψ| 2 ψ,xS 1 ,t et nous montrons la solution de cette équation ayant pour donnée initiale ψ(0,x)=ϵ(A exp (ix)+B exp (-ix)) avec ε petit, va échanger périodiquement de l'énergie entre les modes de Fourier e ix et e -ix dès que A 2 B 2 . Cet effet de battement, dont la période est de l'ordre de ϵ -2 , est mis en évidence pour des temps de l'ordre de ϵ -5/2 . Nous présentons aussi quelques généralisations.

We consider the nonlinear Schrödinger equation iψ t =-ψ xx ±2 cos 2x|ψ| 2 ψ,xS 1 ,t and we prove that the solution of this equation, with small initial datum ψ(0,x)=ϵ(A exp (ix)+B exp (-ix)), will periodically exchange energy between the Fourier modes e ix and e -ix as soon as A 2 B 2 . This beating effect is described up to time of order ϵ -5/2 while the frequency is of order ϵ 2 . We also discuss some generalizations.

Publié le : 2011-01-01
DOI : https://doi.org/10.1016/j.anihpc.2010.11.004
Classification:  37K45,  35Q55,  35B34,  35B35
Mots clés: Forme normale, Equation de Schrödinger non linéaire, Résonances, Échange d'énergie
@article{AIHPC_2011__28_1_127_0,
     author = {Gr\'ebert, Beno\^\i t and Villegas-Blas, Carlos},
     title = {On the energy exchange between resonant modes in nonlinear Schr\"odinger equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {28},
     year = {2011},
     pages = {127-134},
     doi = {10.1016/j.anihpc.2010.11.004},
     mrnumber = {2765514},
     zbl = {1216.35137},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_2011__28_1_127_0}
}
Grébert, Benoît; Villegas-Blas, Carlos. On the energy exchange between resonant modes in nonlinear Schrödinger equations. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) pp. 127-134. doi : 10.1016/j.anihpc.2010.11.004. http://gdmltest.u-ga.fr/item/AIHPC_2011__28_1_127_0/

[1] D. Bambusi, B. Grébert, Birkhoff normal form for PDEs with tame modulus, Duke Math. J. 135 (2006), 507-567 | MR 2272975 | Zbl 1110.37057

[2] J. Bourgain, Global Solutions of Nonlinear Schrödinger Equations, Amer. Math. Soc. Colloq. Publ. vol. 46, Amer. Math. Soc., Providence, RI (1999) | Zbl 0933.35178

[3] B. Grébert, Birkhoff normal form and Hamiltonian PDEs, Partial Differential Equations and Applications, Sémin. Congr. vol. 15, Soc. Math. France, Paris (2007), 1-46 | MR 2352816 | Zbl 1157.37019

[4] J. Moser, Lectures on Hamiltonian systems, Mem. Amer. Math. Soc. 81 (1968), 1-60 | MR 230498 | Zbl 0172.11401