Dans cet article nous utilisons les propriétés des fonctions avec puissance radiale afin d'obtenir des contre-exemples à certaines inéquations de type Caccioppoli et Harnack faible pour les fonctions quasisuperharmoniques, lesquelles sont bien connues être valables pour les fonctions p-superharmoniques. Nous obtenons aussi de nouvelles bornes pour l'intégrabilité locale des fonctions quasisuperharmoniques. De plus nous démontrons que le logarithme d'une fonction positive quasiminimisante est de type BMO, et appartient à un espace de Sobolev.
In this paper we use quasiminimizing properties of radial power-type functions to deduce counterexamples to certain Caccioppoli-type inequalities and weak Harnack inequalities for quasisuperharmonic functions, both of which are well known to hold for p-superharmonic functions. We also obtain new bounds on the local integrability for quasisuperharmonic functions. Furthermore, we show that the logarithm of a positive quasisuperminimizer has bounded mean oscillation and belongs to a Sobolev type space.
@article{AIHPC_2010__27_6_1489_0, author = {Bj\"orn, Anders and Bj\"orn, Jana and Marola, Niko}, title = {BMO, integrability, Harnack and Caccioppoli inequalities for quasiminimizers}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {27}, year = {2010}, pages = {1489-1505}, doi = {10.1016/j.anihpc.2010.09.005}, mrnumber = {2738330}, zbl = {1219.49003}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2010__27_6_1489_0} }
Björn, Anders; Björn, Jana; Marola, Niko. BMO, integrability, Harnack and Caccioppoli inequalities for quasiminimizers. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) pp. 1489-1505. doi : 10.1016/j.anihpc.2010.09.005. http://gdmltest.u-ga.fr/item/AIHPC_2010__27_6_1489_0/
[1] A weak Kellogg property for quasiminimizers, Comment. Math. Helv. 81 (2006), 809-825 | MR 2271223 | Zbl 1105.31007
,[2] Removable singularities for bounded p-harmonic and quasi(super)harmonic functions on metric spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), 71-95 | MR 2210110 | Zbl 1208.31004
,[3] A regularity classification of boundary points for p-harmonic functions and quasiminimizers, J. Math. Anal. Appl. 338 (2008), 39-47 | MR 2386397 | Zbl 1143.31006
,[4] A. Björn, Cluster sets for Sobolev functions and quasiminimizers, J. Anal. Math., in press. | MR 2762997
[5] A. Björn, J. Björn, Boundary regularity for p-harmonic functions and solutions of the obstacle problem, preprint, LiTH-MAT-R-2004-09, Linköping, 2004.
[6] Boundary regularity for p-harmonic functions and solutions of the obstacle problem, J. Math. Soc. Japan 58 (2006), 1211-1232 | MR 2276190 | Zbl 1211.35109
, ,[7] A. Björn, J. Björn, Power-type quasiminimizers, Ann. Acad. Sci. Fenn. Math., in press. | MR 2797698
[8] A. Björn, J. Björn, Nonlinear Potential Theory on Metric Spaces, EMS Tracts Math., European Math. Soc., Zurich, in press. | MR 2867756
[9] Moser iteration for (quasi)minimizers on metric spaces, Manuscripta Math. 121 (2006), 339-366 | MR 2267657 | Zbl 1123.49032
, ,[10] Pasting lemmas and characterizations of boundary regularity for quasiminimizers, Results Math. 55 (2009), 265-279 | MR 2571194 | Zbl 1192.31001
, ,[11] Boundary continuity for quasiminimizers on metric spaces, Illinois J. Math. 46 (2002), 383-403 | MR 1936925 | Zbl 1026.49029
,[12] Necessity of a Wiener type condition for boundary regularity of quasiminimizers and nonlinear elliptic equations, Calc. Var. Partial Differential Equations 35 (2009), 481-496 | MR 2496653 | Zbl 1177.31007
,[13] Poincaré inequalities, uniform domains and extension properties for Newton–Sobolev functions in metric spaces, J. Math. Anal. Appl. 332 (2007), 190-208 | MR 2319654 | Zbl 1132.46021
, ,[14] Differentiability of Lipschitz functions on metric spaces, Geom. Funct. Anal. 9 (1999), 428-517 | MR 1708448 | Zbl 0942.58018
,[15] Harnack inequalities for quasiminima of variational integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 295-308 | Numdam | MR 778976 | Zbl 0565.35012
, ,[16] Fourier Analysis, Graduate Studies in Mathematics vol. 29, Amer. Math. Soc., Providence, RI (2001) | MR 1800316
,[17] Weighted Sobolev–Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations 19 (1994), 523-604 | MR 1265808 | Zbl 0822.46032
, , ,[18] Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam (1985) | MR 807149 | Zbl 0578.46046
, ,[19] On the regularity of the minima of variational integrals, Acta Math. 148 (1982), 31-46 | MR 666107 | Zbl 0494.49031
, ,[20] Quasi-minima, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 79-107 | Numdam | MR 778969 | Zbl 0541.49008
, ,[21] Sobolev meets Poincaré, C. R. Acad. Sci. Paris Ser. I Math. 320 (1995), 1211-1215 | MR 1336257 | Zbl 0837.46024
, ,[22] Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 no. 688 (2000) | MR 1683160 | Zbl 0954.46022
, ,[23] Lectures on Analysis on Metric Spaces, Springer, New York (2001) | MR 1800917 | Zbl 0985.46008
,[24] Nonlinear Potential Theory of Degenerate Elliptic Equations, Dover, Mineola, NY (2006) | MR 2305115 | Zbl 0776.31007
, , ,[25] Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), 1-61 | MR 1654771 | Zbl 0915.30018
, ,[26] The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J. 53 (1986), 503-523 | MR 850547 | Zbl 0614.35066
,[27] P.T. Judin, Onedimensional Quasiminimizers and Quasisuperminimizers [Yksiulotteiset Kvasiminimoijat ja Kvasisuperminimoijat], Licentiate thesis, Dept. of Math., Helsinki University, Helsinki, 2006 (in Finnish).
[28] Potential theory of quasiminimizers, Ann. Acad. Sci. Fenn. Math. 28 (2003), 459-490 | MR 1996447 | Zbl 1035.31007
, ,[29] Sobolev space properties of superharmonic functions on metric spaces, Results Math. 44 (2003), 114-129 | MR 2011911 | Zbl 1042.31005
, ,[30] Regularity of quasi-minimizers on metric spaces, Manuscripta Math. 105 (2001), 401-423 | MR 1856619 | Zbl 1006.49027
, ,[31] Quasiconformal mappings and Sobolev spaces, Studia Math. 131 (1998), 1-17 | MR 1628655 | Zbl 0918.30011
, ,[32] Global integrability of p-superharmonic functions on metric spaces, J. Anal. Math. 106 (2008), 191-207 | MR 2448985 | Zbl 1171.31002
,[33] N. Marola, Moser's method for minimizers on metric measure spaces, preprint A478, Helsinki University of Technology, Institute of Mathematics, Helsinki, 2004.
[34] O. Martio, Boundary behavior of quasiminimizers and Dirichlet finite PWB solutions in the borderline case, Report in Math. 440, University of Helsinki, Helsinki, 2006.
[35] Reflection principle for quasiminimizers, Funct. Approx. Comment. Math. 40 (2009), 165-173 | MR 2543554 | Zbl 1183.31003
,[36] O. Martio, Capacity and potential estimates for quasiminimizers, Complex Anal. Oper. Theory, doi:10.1007/s11785-010-0074-5, in press. | MR 2836316
[37] Quasiminimizers – definitions, constructions and capacity estimates, http://www.mai.liu.se/TM/conf09/martio.pdf
,[38] Quasiminimizers in one dimension: integrability of the derivative, inverse function and obstacle problems, Ann. Mat. Pura Appl. 186 (2007), 579-590 | MR 2317779 | Zbl 1150.49016
, ,[39] Funktionen beschränkter mittlerer Oszillation, Lecture Notes in Mathematics vol. 487, Springer, Berlin (1975) | MR 511997 | Zbl 0324.46030
, ,[40] Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoam. 16 (2000), 243-279 | MR 1809341 | Zbl 0974.46038
,[41] Harmonic functions on metric spaces, Illinois J. Math. 45 (2001), 1021-1050 | MR 1879250 | Zbl 0989.31003
,[42] Remarks on quasi(sub)minima, Nonlinear Anal. 10 (1986), 115-120 | MR 825211 | Zbl 0592.35046
,[43] On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721-747 | MR 226198 | Zbl 0153.42703
,[44] The reflection principle for one-dimensional quasiminimizers, http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-19162
,[45] Boundary regularity for quasiminima, Arch. Rational Mech. Anal. 92 (1986), 371-382 | MR 823124 | Zbl 0611.35030
,