A quasi-monotonicity formula for the solution to a semilinear parabolic equation , in with 0-Dirichlet boundary condition is obtained. As an application, it is shown that for some suitable global weak solution u and any compact set there exists a close subset such that u is continuous in and the -dimensional parabolic Hausdorff measure of is finite.
@article{AIHPC_2010__27_6_1333_0, author = {Zheng, Gao-Feng}, title = {A quasi-monotonicity formula and partial regularity for borderline solutions to a parabolic equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {27}, year = {2010}, pages = {1333-1360}, doi = {10.1016/j.anihpc.2010.07.001}, mrnumber = {2738324}, zbl = {1213.35177}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2010__27_6_1333_0} }
Zheng, Gao-Feng. A quasi-monotonicity formula and partial regularity for borderline solutions to a parabolic equation. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) pp. 1333-1360. doi : 10.1016/j.anihpc.2010.07.001. http://gdmltest.u-ga.fr/item/AIHPC_2010__27_6_1333_0/
[1] Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford Ser. 28 (1977), 473-486 | MR 473484 | Zbl 0377.35037
,[2] Mathematical Problems from Combustion Theory, Appl. Math. Sci. vol. 83, Springer-Verlag, New York (1989) | MR 1012946 | Zbl 0692.35001
, ,[3] Partial regularity of suitable weak solutions of the Navier–Stokes equations, Comm. Pure Appl. Math. 35 (1982), 771-831 | MR 673830 | Zbl 0509.35067
, , ,[4] An Introduction to Semilinear Evolution Equations, Oxford Lecture Ser. Math. Appl. vol. 13, The Clarendon Press, Oxford University Press, NY (1998) | MR 1691574 | Zbl 0926.35049
, ,[5] Some blow-up problems for a semilinear parabolic equation with a potential, J. Differential Equations 244 (2008), 766-802 | MR 2391344 | Zbl 1139.35060
, ,[6] On partial regularity of the borderline solution of semilinear parabolic problems, Calc. Var. Partial Differential Equations 30 (2007), 251-275 | MR 2334940 | Zbl 1125.35021
, , ,[7] Local monotonicity formulas for some nonlinear diffusion equations, Calc. Var. Partial Differential Equations 23 (2005), 67-81 | MR 2133662 | Zbl 1119.35026
,[8] Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985), 425-447 | MR 783924 | Zbl 0576.35068
, ,[9] Immediate regularization after blow-up, SIAM J. Math. Anal. 37 (2005), 752-776 | MR 2191775 | Zbl 1102.35053
, , ,[10] On the blowing up of solutions of the Cauchy problem for , J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109-124 | MR 214914 | Zbl 0163.34002
,[11] Continuation of blow-up solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math. 50 (1997), 1-67 | MR 1423231 | Zbl 0874.35057
, ,[12] Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985), 297-319 | MR 784476 | Zbl 0585.35051
, ,[13] Characterizing blowup using similarity variables, Indiana Univ. Math. J. 36 (1987), 1-40 | MR 876989 | Zbl 0601.35052
, ,[14] Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math. 42 (1989), 845-884 | MR 1003437 | Zbl 0703.35020
, ,[15] Blow up rate for semilinear heat equations with subcritical nonlinearity, Indiana Univ. Math. J. 53 (2004), 483-514 | MR 2060042 | Zbl 1058.35096
, , ,[16] On blow-up rate for sign-changing solutions in a convex domain, Math. Methods Appl. Sci. 27 (2004), 1771-1782 | MR 2087296 | Zbl 1066.35043
, , ,[17] On the growth of solutions of quasi-linear parabolic equations, Comm. Pure Appl. Math. 16 (1963), 305-330 | MR 160044 | Zbl 0156.33503
,[18] Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr. vol. 23, American Mathematical Society, Providence, RI (1967) | MR 241822
, , ,[19] Some nonexistence and instability theorems for solutions of formally parabolic equations of the form , Arch. Ration. Mech. Anal. 51 (1973), 371-386 | MR 348216
,[20] On nonexistence of type II blowup for a supercritical nonlinear heat equation, Comm. Pure Appl. Math. 57 (2004), 1494-1541 | MR 2077706 | Zbl 1112.35098
, ,[21] Boundedness of global solutions for a supercritical semilinear heat equation and its application, Indiana Univ. Math. J. 54 (2005), 1047-1059 | MR 2164417 | Zbl 1100.35048
,[22] Multiple blowup of solutions for a semilinear heat equation, Math. Ann. 331 (2005), 461-473 | MR 2115464 | Zbl 1063.35079
,[23] Various behaviors of solutions for a semilinear heat equation after blowup, J. Funct. Anal. 220 (2005), 214-227 | MR 2114703 | Zbl 1112.35099
,[24] On the asymptotic behavior of solutions of certain quasilinear parabolic equations, J. Differential Equations 54 (1984), 97-120 | MR 756548 | Zbl 0565.35053
, , ,[25] On the evolution of harmonic maps in higher dimensions, J. Differential Geom. 28 (1988), 485-502 | MR 965226 | Zbl 0631.58004
,