Energy conservation and blowup of solutions for focusing Gross–Pitaevskii hierarchies
Chen, Thomas ; Pavlović, Nataša ; Tzirakis, Nikolaos
Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010), p. 1271-1290 / Harvested from Numdam

We consider solutions of the focusing cubic and quintic Gross–Pitaevskii (GP) hierarchies. We identify an observable corresponding to the average energy per particle, and we prove that it is a conserved quantity. We prove that all solutions to the focusing GP hierarchy at the L 2 -critical or L 2 -supercritical level blow up in finite time if the energy per particle in the initial condition is negative. Our results do not assume any factorization of the initial data.

@article{AIHPC_2010__27_5_1271_0,
     author = {Chen, Thomas and Pavlovi\'c, Nata\v sa and Tzirakis, Nikolaos},
     title = {Energy conservation and blowup of solutions for focusing Gross--Pitaevskii hierarchies},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {27},
     year = {2010},
     pages = {1271-1290},
     doi = {10.1016/j.anihpc.2010.06.003},
     mrnumber = {2683760},
     zbl = {1200.35253},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_2010__27_5_1271_0}
}
Chen, Thomas; Pavlović, Nataša; Tzirakis, Nikolaos. Energy conservation and blowup of solutions for focusing Gross–Pitaevskii hierarchies. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) pp. 1271-1290. doi : 10.1016/j.anihpc.2010.06.003. http://gdmltest.u-ga.fr/item/AIHPC_2010__27_5_1271_0/

[1] R. Adami, G. Golse, A. Teta, Rigorous derivation of the cubic NLS in dimension one, J. Stat. Phys. 127 no. 6 (2007), 1194-1220 | MR 2331036 | Zbl 1118.81021

[2] M. Aizenman, E.H. Lieb, R. Seiringer, J.P. Solovej, J. Yngvason, Bose–Einstein quantum phase transition in an optical lattice model, Phys. Rev. A 70 (2004), 023612 | Zbl 1170.82325

[3] I. Anapolitanos, I.M. Sigal, The Hartree–von Neumann limit of many body dynamics, http://arxiv.org/abs/0904.4514 | Zbl 1339.81020

[4] V. Bach, T. Chen, J. Fröhlich, I.M. Sigal, Smooth Feshbach map and operator-theoretic renormalization group methods, J. Funct. Anal. 203 no. 1 (2003), 44-92 | MR 1996868 | Zbl 1060.47028

[5] T. Cazenave, Semilinear Schrödinger Equations, Courant Lect. Notes vol. 10, Amer. Math. Soc. (2003) | MR 2002047 | Zbl 1055.35003

[6] T. Chen, N. Pavlović, The quintic NLS as the mean field limit of a Boson gas with three-body interactions, http://arxiv.org/abs/0812.2740 | MR 2747009 | Zbl 1213.35368

[7] T. Chen, N. Pavlović, On the Cauchy problem for focusing and defocusing Gross–Pitaevskii hierarchies, Discrete Contin. Dyn. Syst. Ser. A 27 no. 2 (2010), 715-739 | MR 2600687 | Zbl 1190.35207

[8] A. Elgart, L. Erdös, B. Schlein, H.-T. Yau, Gross–Pitaevskii equation as the mean field limit of weakly coupled bosons, Arch. Rat. Mech. Anal. 179 no. 2 (2006), 265-283 | MR 2209131 | Zbl 1086.81035

[9] A. Elgart, B. Schlein, Mean field dynamics of boson stars, Comm. Pure Appl. Math. 60 no. 4 (2007), 500-545 | MR 2290709 | Zbl 1113.81032

[10] L. Erdös, B. Schlein, H.-T. Yau, Derivation of the Gross–Pitaevskii hierarchy for the dynamics of Bose–Einstein condensate, Comm. Pure Appl. Math. 59 no. 12 (2006), 1659-1741 | MR 2257859 | Zbl 1122.82018

[11] L. Erdös, B. Schlein, H.-T. Yau, Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems, Invent. Math. 167 (2007), 515-614 | MR 2276262 | Zbl 1123.35066

[12] L. Erdös, B. Schlein, H.-T. Yau, Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate, Ann. Math. 172 no. 1 (2010), 291-370 | MR 2680421 | Zbl 1204.82028

[13] L. Erdös, H.-T. Yau, Derivation of the nonlinear Schrödinger equation from a many body Coulomb system, Adv. Theor. Math. Phys. 5 no. 6 (2001), 1169-1205 | MR 1926667 | Zbl 1014.81063

[14] J. Fröhlich, S. Graffi, S. Schwarz, Mean-field- and classical limit of many-body Schrödinger dynamics for bosons, Comm. Math. Phys. 271 no. 3 (2007), 681-697 | MR 2291792 | Zbl 1172.82011

[15] J. Fröhlich, A. Knowles, A. Pizzo, Atomism and quantization, J. Phys. A 40 no. 12 (2007), 3033-3045 | MR 2313859 | Zbl 1115.81071

[16] J. Fröhlich, A. Knowles, S. Schwarz, On the mean-field limit of bosons with Coulomb two-body interaction, Comm. Math. Phys. 288 no. 3 (2009), 1023-1059 | MR 2504864 | Zbl 1177.82016

[17] L. Glangetas, F. Merle, A geometrical approach of existence of blow up solutions in H 1 for nonlinear Schrödinger equation, Rep. No. R95031, Laboratoire d'Analyse Numérique, Univ. Pierre and Marie Curie, 1995.

[18] R. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equation, J. Math. Phys. 18 no. 9 (1977), 1794-1797 | MR 460850 | Zbl 0372.35009

[19] M. Grillakis, M. Machedon, D. Margetis, Second-order corrections to mean field evolution for weakly interacting bosons. I, Comm. Math. Phys. 294 no. 1 (2010), 273-301 | MR 2575484 | Zbl 1208.82030

[20] M. Grillakis, D. Margetis, A priori estimates for many-body Hamiltonian evolution of interacting boson system, J. Hyperbolic Differ. Equ. 5 no. 4 (2008), 857-883 | MR 2475483 | Zbl 1160.35357

[21] K. Hepp, The classical limit for quantum mechanical correlation functions, Comm. Math. Phys. 35 (1974), 265-277 | MR 332046

[22] K. Kirkpatrick, B. Schlein, G. Staffilani, Derivation of the two dimensional nonlinear Schrödinger equation from many body quantum dynamics, arXiv:0808.0505 | MR 2752936 | Zbl 1208.81080

[23] S. Klainerman, M. Machedon, On the uniqueness of solutions to the Gross–Pitaevskii hierarchy, Commun. Math. Phys. 279 no. 1 (2008), 169-185 | MR 2377632 | Zbl 1147.37034

[24] E.H. Lieb, R. Seiringer, Proof of Bose–Einstein condensation for dilute trapped gases, Phys. Rev. Lett. 88 (2002), 170409

[25] E.H. Lieb, R. Seiringer, J.P. Solovej, J. Yngvason, The Mathematics of the Bose Gas and Its Condensation, Birkhäuser (2005) | MR 2143817 | Zbl 1170.82325

[26] E.H. Lieb, R. Seiringer, J. Yngvason, A rigorous derivation of the Gross–Pitaevskii energy functional for a two-dimensional Bose gas, Commun. Math. Phys. 224 (2001) | MR 1868990 | Zbl 0996.82010

[27] H. Nawa, Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power, Comm. Pure Appl. Math. 52 no. 2 (1999), 193-270 | MR 1653454

[28] T. Ogawa, Y. Tsutsumi, Blow-up of H 1 solutions for the one-dimensional nonlinear Schrödinger equations with critical power nonlinearity, Proc. Amer. Math. Soc. 111 no. 2 (1991), 487-496 | MR 1045145 | Zbl 0747.35004

[29] I. Rodnianski, B. Schlein, Quantum fluctuations and rate of convergence towards mean field dynamics, Comm. Math. Phys. 291 no. 1 (2009), 31-61 | MR 2530155 | Zbl 1186.82051

[30] H. Spohn, Kinetic equations from Hamiltonian dynamics, Rev. Mod. Phys. 52 no. 3 (1980), 569-615 | MR 578142

[31] M. Tsutsumi, Nonexistence of global solutions to the Cauchy problem for the damped non-linear Schrödinger equations, SIAM J. Math. Anal. 15 (1984), 357-366 | MR 731873 | Zbl 0539.35022

[32] S.N. Vlasov, V.A. Petrishchev, V.I. Talanov, Averaged description of wave beams in linear and nonlinear media (the method of moments), Radiophys. and Quantum Electronics 14 (1971), 1062-1070, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 14 (1971), 1353-1363