In this paper we prove the global well-posedness for a three-dimensional Boussinesq system with axisymmetric initial data. This system couples the Navier–Stokes equation with a transport-diffusion equation governing the temperature. Our result holds uniformly with respect to the heat conductivity coefficient which may vanish.
@article{AIHPC_2010__27_5_1227_0, author = {Hmidi, Taoufik and Rousset, Fr\'ed\'eric}, title = {Global well-posedness for the Navier--Stokes--Boussinesq system with axisymmetric data}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {27}, year = {2010}, pages = {1227-1246}, doi = {10.1016/j.anihpc.2010.06.001}, zbl = {1200.35229}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2010__27_5_1227_0} }
Hmidi, Taoufik; Rousset, Frédéric. Global well-posedness for the Navier–Stokes–Boussinesq system with axisymmetric data. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) pp. 1227-1246. doi : 10.1016/j.anihpc.2010.06.001. http://gdmltest.u-ga.fr/item/AIHPC_2010__27_5_1227_0/
[1] Résultats de régularité de solutions axisymétriques pour le système de Navier–Stokes, Bull. Sci. Math. 132 no. 7 (2008), 592-624
,[2] On the global well-posedness for Boussinesq system, J. Differential Equations 233 no. 1 (2007), 199-220 | Zbl 1111.35032
, ,[3] On the global regularity of axisymmetric Navier–Stokes–Boussinesq system, arXiv:0908.0894v1 | Zbl 1208.35107
, , ,[4] On the global well-posedness for the axisymmetric Euler equations, Math. Ann. 347 no. 1 (2010), 15-41 | Zbl 05679479
, , ,[5] Existence globale pour un fluide inhomogène, Ann. Inst. Fourier 57 (2007), 883-917 | Numdam | Zbl 1122.35091
, ,[6] Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys. 94 (1984), 61-66 | Zbl 0573.76029
, , ,[7] Limite non visqueuse pour les fluides incompressibles axisymétrique, Nonlinear Partial Differential Equations and Their Applications, Collège de France seminar, vol. XIV, Paris, 1997/1998, Stud. Math. Appl. vol. 31, North-Holland, Amsterdam (2002), 29-55 | MR 1935988
, ,[8] Optimal transport, convection, magnetic relaxation and generalized Boussinesq equations, arXiv:0801.1088 (2008) | MR 2540168
,[9] First order interpolation inequality with weights, Compos. Math. 53 (1984), 259-275 | Numdam | MR 768824 | Zbl 0563.46024
, , ,[10] Global regularity for the 2-D Boussinesq equations with partial viscous terms, Adv. Math. 203 no. 2 (2006), 497-513 | MR 2227730 | Zbl 1100.35084
,[11] Perfect Incompressible Fluids, Oxford University Press (1998) | MR 1688875
,[12] On the global wellposedness of the 3-D incompressible Navier–Stokes equations, Ann. École Norm. Sup. 39 (2006), 679-698 | MR 2290141 | Zbl 1124.35052
, ,[13] Wellposedness and stability results for the Navier–Stokes equations in , Ann. Inst. H. Poincaré Anal. Non Linéaire 26 no. 2 (2009), 599-624 | Numdam | MR 2504045 | Zbl 1165.35038
, ,[14] J.-Y. Chemin, I. Gallagher, M. Paicu, Global regularity for some classes of large solutions to the Navier–Stokes equations, Ann. of Math., in press. | MR 2776367
[15] Axisymmetric incompressible flows with bounded vorticity, Russian Math. Surveys 62 no. 3 (2007), 73-94 | MR 2355419 | Zbl 1139.76011
,[16] Global well-posedness issues for the inviscid Boussinesq system with Yudovich's type data, Comm. Math. Phys. 290 no. 1 (2009), 1-14, arXiv:0806.4081 [math.AP] | MR 2520505 | Zbl 1186.35157
, ,[17] Le théorème de Leary et le théorème de Fujita–Kato pour le système de Boussinesq partiellement visqueux, Bull. Soc. Math. France 136 (2008), 261-309 | Numdam | MR 2415344
, ,[18] Global existence results for the anisotropic Boussinesq system in dimension two, arXiv:0809.4984v1 [math.AP] (2008) | MR 2782720
, ,[19] On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity, Adv. Differential Equations 12 no. 4 (2007), 461-480 | MR 2305876 | Zbl 1154.35073
, ,[20] Incompressible viscous flows in borderline Besov spaces, Arch. Ration. Mech. Anal. 189 no. 2 (2008), 283-300 | MR 2413097 | Zbl 1147.76014
, ,[21] On the global well-posedness of the Boussinesq system with zero viscosity, Indiana Univ. Math. J. 58 no. 4 (2009), 1591-1618 | MR 2542974 | Zbl 1178.35303
, ,[22] Global well-posedness for Euler–Boussinesq system, arXiv:0903.3747 (2009) | MR 2763332 | Zbl 1284.76089
, , ,[23] Global well-posedness for Navier–Stokes–Boussinesq system, arXiv:0904.1536v1 (2009) | MR 2683758 | Zbl 1284.76089
, , ,[24] Unique solvability in large of a three-dimensional Cauchy problem for the Navier–Stokes equations in the presence of axial symmetry, Zap. Nauchn. Sem. LOMI 7 (1968), 155-177 | Zbl 0195.10603
,[25] Recent Developments in the Navier–Stokes Problem, CRC Press (2002) | MR 1938147 | Zbl 1034.35093
,[26] On axially symmetric flows in , Z. Anal. Anwend. 18 no. 3 (1999), 639-649 | MR 1718156 | Zbl 0943.35066
, , , ,[27] Sur le mouvement d'un liquide visqueux remplissant l'espace, Acta Math. 63 (1934), 193-248 | MR 1555394
,[28] Note on global existence for axially symmetric solutions of the Euler system, Proc. Japan Acad. Ser. A Math. Sci. 70 no. 10 (1994), 299-304 | MR 1313183 | Zbl 0831.35141
, ,[29] Axially symmetric flows of ideal and viscous fluids filling the whole space, Prikl. Mat. Mekh. 32 no. 1 (1968), 59-69 | MR 239293 | Zbl 0172.53405
, ,