We consider the semilinear parabolic equation on the whole space , , where the exponent is associated with the Sobolev imbedding . First, we study the decay and blow-up of the solution by means of the potential-well and forward self-similar transformation. Then, we discuss blow-up in infinite time and classify the orbit.
@article{AIHPC_2010__27_3_877_0, author = {Ikehata, Ryo and Ishiwata, Michinori and Suzuki, Takashi}, title = {Semilinear parabolic equation in $ {\mathbf{R}}^{N}$ associated with critical Sobolev exponent}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {27}, year = {2010}, pages = {877-900}, doi = {10.1016/j.anihpc.2010.01.002}, mrnumber = {2629884}, zbl = {1192.35099}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2010__27_3_877_0} }
Ikehata, Ryo; Ishiwata, Michinori; Suzuki, Takashi. Semilinear parabolic equation in $ {\mathbf{R}}^{N}$ associated with critical Sobolev exponent. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) pp. 877-900. doi : 10.1016/j.anihpc.2010.01.002. http://gdmltest.u-ga.fr/item/AIHPC_2010__27_3_877_0/
[1] Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), 271-297 | MR 982351 | Zbl 0702.35085
, , ,[2] Solutions globales d'equations de la shaleur semi lineaires, Comm. Partial Differential Equations 9 (1984), 955-978 | MR 755928 | Zbl 0555.35067
, ,[3] Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991), 615-622 | MR 1121147 | Zbl 0768.35025
, ,[4] Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge (1989) | MR 990239 | Zbl 0699.35006
,[5] Variational problems related to self-similar solutions of the heat equation, Nonlinear Anal. 11 (1987), 1103-1133 | MR 913672 | Zbl 0639.35038
, ,[6] Large time behavior for convection–diffusion equations in , J. Funct. Anal. 100 (1991), 119-161 | MR 1124296 | Zbl 0762.35011
, ,[7] Semilinear Hyperbolic Equations, MSJ Mem. vol. 7, Math. Soc. Japan (2000) | MR 1807081 | Zbl 0959.35002
,[8] The Palais–Smale condition for the energy of some semilinear parabolic equations, Hiroshima Math. J. 30 (2000), 117-127 | MR 1753386 | Zbl 0953.35067
,[9] Semilinear parabolic equations involving critical Sobolev exponent: Local and asymptotic behavior of solutions, Differential Integral Equations 13 (2000), 437-477 | MR 1775238 | Zbl 1016.35005
, ,[10] K. Ishige, T. Kawakami, Asymptotic behavior of solutions for some semilinear heat equations in , preprint | MR 2505375
[11] Existence of a stable set for some nonlinear parabolic equation involving critical Sobolev exponent, Discrete Contin. Dyn. Syst. (2005), 443-452 | MR 2192702 | Zbl 1173.35344
,[12] M. Ishiwata, On the asymptotic behavior of radial positive solutions for semilinear parabolic problem involving critical Sobolev exponent, in preparation
[13] Perturbation Theory for Linear Operators, Springer-Verlag, New York (1976) | MR 407617
,[14] Remarks on the large time behaviour of a nonlinear diffusion equation, Ann. Inst. H. Poincaré 4 (1987), 423-452 | MR 921547 | Zbl 0653.35036
,[15] Asymptotic behavior of solutions of a semilinear heat equation with subcritical nonlinearity, Ann. Inst. H. Poincaré 13 (1996), 1-15 | Numdam | MR 1373470 | Zbl 0847.35060
,[16] Existence and behavior of solutions for , Adv. Math. Sci. Appl. 7 (1997), 367-400 | MR 1454672 | Zbl 0876.35061
,[17] Exact Controllability and Stabilization, Multiplier Method, Masson, Paris (1994) | MR 1359765 | Zbl 0937.93003
,[18] Existence and asymptotic stability of strong solutions of nonlinear evolution equations with a difference term of subdifferentials, Colloq. Math. Soc. Janos Bolyai, Qualitative Theory of Differential Equations, vol. 30, North-Holland, Amsterdam (1980) | Zbl 0506.35075
,[19] -energy method and its applications, nonlinear partial differential equations and their applications, GAKUTO Internat. Ser. Math. Sci. Appl. 20 (2004), 505-516 | MR 2087494 | Zbl 1061.35035
,[20] Saddle points and unstability of nonlinear hyperbolic equations, Israel J. Math. 22 (1975), 273-303 | MR 402291 | Zbl 0317.35059
, ,[21] P. Poláčik, private communication
[22] On global solution of nonlinear hyperbolic equations, Arch. Ration. Mech. Anal. 30 (1968), 148-172 | MR 227616 | Zbl 0159.39102
,[23] Semilinear parabolic equation on bounded domain with critical Sobolev exponent, Indiana Univ. Math. J. 57 no. 7 (2008), 3365-3396 | MR 2492236 | Zbl 1201.35116
,[24] Equations of Evolution, Pitman, London (1979) | MR 533824
,