Dans cet article on démontre l'existence d'une solution non-banale et positive pour les équations non-linéaires de Schrödinger–Maxwell dans en supposant que le terme non-linéaire satisfait les hypothèses introduites par Berestycki et Lions.
In this paper we prove the existence of a nontrivial solution to the nonlinear Schrödinger–Maxwell equations in , assuming on the nonlinearity the general hypotheses introduced by Berestycki and Lions.
@article{AIHPC_2010__27_2_779_0,
author = {Azzollini, A. and d'Avenia, P. and Pomponio, A.},
title = {On the Schr\"odinger--Maxwell equations under the effect of a general nonlinear term},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
volume = {27},
year = {2010},
pages = {779-791},
doi = {10.1016/j.anihpc.2009.11.012},
mrnumber = {2595202},
zbl = {1187.35231},
language = {en},
url = {http://dml.mathdoc.fr/item/AIHPC_2010__27_2_779_0}
}
Azzollini, A.; d'Avenia, P.; Pomponio, A. On the Schrödinger–Maxwell equations under the effect of a general nonlinear term. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) pp. 779-791. doi : 10.1016/j.anihpc.2009.11.012. http://gdmltest.u-ga.fr/item/AIHPC_2010__27_2_779_0/
[1] , , Multiple bound states for the Schrödinger–Poisson problem, Commun. Contemp. Math. 10 (2008), 391-404 | MR 2417922 | Zbl 1188.35171
[2] , , Ground state solutions for the nonlinear Schrödinger–Maxwell equations, J. Math. Anal. Appl. 345 (2008), 90-108 | MR 2422637 | Zbl 1147.35091
[3] , , On the Schrödinger equation in under the effect of a general nonlinear term, Indiana Univ. Math. J. 58 (2009), 1361-1378 | MR 2542090 | Zbl 1170.35038
[4] , , An eigenvalue problem for the Schrödinger–Maxwell equations, Topol. Methods Nonlinear Anal. 11 (1998), 283-293 | MR 1659454 | Zbl 0926.35125
[5] , , Existence of hylomorphic solitary waves in Klein–Gordon and in Klein–Gordon–Maxwell equations, Rend. Accad. Lincei 20 (2009), 243-279 | MR 2540181 | Zbl 1194.35343
[6] , , , , Solitons and the electromagnetic field, Math. Z. 232 (1999), 73-102 | MR 1714281 | Zbl 0930.35168
[7] , , Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal. 82 (1983), 313-345 | MR 695535 | Zbl 0533.35029
[8] , , Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Ration. Mech. Anal. 82 (1983), 347-375 | MR 695536 | Zbl 0556.35046
[9] , A multiplicity result for the linear Schrödinger–Maxwell equations with negative potential, Ann. Polon. Math. 79 (2002), 21-30 | MR 1959755 | Zbl 1130.35333
[10] , A multiplicity result for the nonlinear Schrödinger–Maxwell equations, Commun. Appl. Anal. 7 (2003), 417-423 | MR 1986248 | Zbl 1085.81510
[11] , , Solitary waves for Maxwell–Schrödinger equations, Electron. J. Differential Equations 94 (2004), 1-31 | MR 2075433 | Zbl 1064.35180
[12] , , Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004), 893-906 | MR 2099569 | Zbl 1064.35182
[13] , , Non-existence results for the coupled Klein–Gordon–Maxwell equations, Adv. Nonlinear Stud. 4 (2004), 307-322 | MR 2079817 | Zbl 1142.35406
[14] , Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations, Adv. Nonlinear Stud. 2 (2002), 177-192 | MR 1896096 | Zbl 1007.35090
[15] , On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem set on , Proc. Roy. Soc. Edinburgh Sect. A Math. 129 (1999), 787-809 | MR 1718530 | Zbl 0935.35044
[16] , Local condition insuring bifurcation from the continuous spectrum, Math. Z. 232 (1999), 651-664 | MR 1727546 | Zbl 0934.35047
[17] , , An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differential Equations 11 (2006), 813-840 | MR 2236583 | Zbl 1155.35095
[18] , , A positive solution for a nonlinear Schrödinger equation on , Indiana Univ. Math. J. 54 (2005), 443-464 | MR 2136816 | Zbl 1143.35321
[19] Y. Jiang, H.S. Zhou, Bound states for a stationary nonlinear Schrödinger–Poisson system with sign-changing potential in , preprint | MR 2510009
[20] , On the existence of a solution for elliptic system related to the Maxwell–Schrödinger equations, Nonlinear Anal. Theory Methods Appl. 67 (2007), 1445-1456 | MR 2323292 | Zbl 1119.35085
[21] , Existence and stability of standing waves for Schrödinger–Poisson–Slater equation, Adv. Nonlinear Stud. 7 (2007), 403-437 | MR 2340278 | Zbl 1133.35013
[22] , , Neumann condition in the Schrödinger–Maxwell system, Topol. Methods Nonlinear Anal. 29 (2007), 251-264 | MR 2345062 | Zbl 1157.35480
[23] A. Pomponio, S. Secchi, A note on coupled nonlinear Schrödinger systems under the effect of general nonlinearities, preprint | MR 2600460
[24] , The Schrödinger–Poisson equation under the effect of a nonlinear local term, J. Func. Anal. 237 (2006), 655-674 | MR 2230354 | Zbl 1136.35037
[25] , Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), 149-162 | MR 454365 | Zbl 0356.35028
[26] , On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helv. 60 (1985), 558-581 | MR 826871 | Zbl 0595.58013
[27] , , Positive solution for a nonlinear stationary Schrödinger–Poisson system in , Discrete Contin. Dyn. Syst. 18 (2007), 809-816 | MR 2318269 | Zbl 1133.35427
[28] , , On the existence of solutions for the Schrödinger–Poisson equations, J. Math. Anal. Appl. 346 (2008), 155-169 | MR 2428280 | Zbl 1159.35017