Nous considérons l'équation de Burgers avec diffusion fractionnelle dans . Nous montrons l'existence de solutions globales regulières pour toute donnée initiale dans , en utilisant une version parabolique de la méthode de De Giorgi introduite par Caffarelli et Vasseur.
We consider the fractional Burgers' equation on with the critical dissipation term. We follow the parabolic De-Giorgi's method of Caffarelli and Vasseur and show existence of smooth solutions given any initial datum in .
@article{AIHPC_2010__27_2_471_0, author = {Chan, Chi Hin and Czubak, Magdalena}, title = {Regularity of solutions for the critical N-dimensional Burgers' equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {27}, year = {2010}, pages = {471-501}, doi = {10.1016/j.anihpc.2009.11.008}, mrnumber = {2595188}, zbl = {1189.35354}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2010__27_2_471_0} }
Chan, Chi Hin; Czubak, Magdalena. Regularity of solutions for the critical N-dimensional Burgers' equation. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) pp. 471-501. doi : 10.1016/j.anihpc.2009.11.008. http://gdmltest.u-ga.fr/item/AIHPC_2010__27_2_471_0/
[1] Non-uniqueness of weak solutions for the fractal burgers equation, arXiv:0907.3695 (2009) | Numdam | MR 2659155 | Zbl 1201.35006
, ,[2] Occurrence and non-appearance of shocks in fractal Burgers equations, J. Hyperbolic Differ. Equ. 4 no. 3 (2007), 479-499 | MR 2339805 | Zbl 1144.35038
, , ,[3] Asymptotic properties of entropy solutions to fractal burgers equation, arXiv:0903.3394 (2009) | MR 2607346 | Zbl 1225.35026
, , ,[4] An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 no. 7-9 (2007), 1245-1260 | MR 2354493 | Zbl 1143.26002
, ,[5] Luis Caffarelli, Alexis Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., in press; arXiv:math/0608447 | MR 2680400
[6] On the critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J. 50 no. special issue (2001), 97-107 | MR 1855665 | Zbl 0989.86004
, , ,[7] Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal. 30 no. 5 (1999), 937-948 | MR 1709781 | Zbl 0957.76093
, ,[8] A pointwise estimate for fractionary derivatives with applications to partial differential equations, Proc. Natl. Acad. Sci. USA 100 no. 26 (2003), 15316-15317 | MR 2032097 | Zbl 1111.26010
, ,[9] A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys. 249 no. 3 (2004), 511-528 | MR 2084005 | Zbl 1309.76026
, ,[10] Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space, Discrete Contin. Dyn. Syst. 21 no. 4 (2008), 1095-1101 | MR 2399451 | Zbl 1141.35436
, ,[11] Finite time singularities and global well-posedness for fractal Burgers equations, Indiana Univ. Math. J. 58 no. 2 (2009), 807-821 | MR 2514389 | Zbl 1166.35030
, , ,[12] A regularity criterion for the dissipative quasi-geostrophic equations, arXiv:0710.5201 (2007) | MR 2566702 | Zbl 1176.35133
, ,[13] Global solution smoothing effect for a non-local regularization of a hyperbolic equation, J. Evol. Equ. 3 no. 3 (2003), 499-521 | MR 2019032 | Zbl 1036.35123
, , ,[14] On convergence of solutions of fractal Burgers equation toward rarefaction waves, SIAM J. Math. Anal. 39 no. 5 (2008), 1536-1549 | MR 2377288 | Zbl 1154.35080
, , ,[15] Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math. 167 no. 3 (2007), 445-453 | MR 2276260 | Zbl 1121.35115
, , ,[16] Blow up and regularity for fractal Burgers equation, Dyn. Partial Differ. Equ. 5 no. 3 (2008), 211-240 | MR 2455893 | Zbl 1186.35020
, , ,[17] Global well-posedness of the critical Burgers equation in critical Besov spaces, arXiv:0805.3465 | MR 2553854 | Zbl 1184.35003
, ,[18] Serge Resnick, Dynamical problems in nonlinear advective partial differential equations, PhD thesis, University of Chicago, 1995