We study optimal embeddings for the space of functions whose Laplacian Δu belongs to , where is a bounded domain. This function space turns out to be strictly larger than the Sobolev space in which the whole set of second-order derivatives is considered. In particular, in the limiting Sobolev case, when , we establish a sharp embedding inequality into the Zygmund space . On one hand, this result enables us to improve the Brezis–Merle (Brezis and Merle (1991) [13]) regularity estimate for the Dirichlet problem , on ∂Ω; on the other hand, it represents a borderline case of D.R. Adams' (1988) [1] generalization of Trudinger–Moser type inequalities to the case of higher-order derivatives. Extensions to dimension are also given. Besides, we show how the best constants in the embedding inequalities change under different boundary conditions.
@article{AIHPC_2010__27_1_73_0, author = {Cassani, Daniele and Ruf, Bernhard and Tarsi, Cristina}, title = {Best constants in a borderline case of second-order Moser type inequalities}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {27}, year = {2010}, pages = {73-93}, doi = {10.1016/j.anihpc.2009.07.006}, zbl = {1194.46048}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2010__27_1_73_0} }
Cassani, Daniele; Ruf, Bernhard; Tarsi, Cristina. Best constants in a borderline case of second-order Moser type inequalities. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) pp. 73-93. doi : 10.1016/j.anihpc.2009.07.006. http://gdmltest.u-ga.fr/item/AIHPC_2010__27_1_73_0/
[1] A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. 128 (1988), 385-398 | Zbl 0672.31008
,[2] Reduced Sobolev inequalities, Canad. Math. Bull. 31 (1988) | Zbl 0662.46036
,[3] Sobolev Spaces, Pure Appl. Math. vol. 140, Elsevier (2003) | Zbl 0347.46040
, ,[4] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math. 12 (1959), 623-727 | Zbl 0093.10401
, , ,[5] Sulla disuguaglianza di Sobolev in spazi di Lorentz, Boll. Unione Mat. Ital. 14 (1977), 148-156 | Zbl 0352.46020
,[6] Estimates for the gradient of solutions of nonlinear elliptic equations with data, Ann. Mat. Pura Appl. 178 (2000), 129-142 | Zbl 1220.35079
, , ,[7] On optimization problems with prescribed rearrangements, Nonlinear Anal. 13 (1989), 185-220 | Zbl 0678.49003
, , ,[8] An -theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. 22 (1995), 241-273 | Numdam | Zbl 0866.35037
, , , , ,[9] A note on spaces and Sobolev embeddings, Indiana Univ. Math. J. 52 (2003), 1215-1230 | Zbl 1098.46023
, , ,[10] On Lorentz–Zygmund spaces, Dissertationes Math. 175 (1980), 1-72 | Zbl 0456.46028
, ,[11] Interpolation of Operators, Pure Appl. Math. vol. 129, Boston Academic Press, Inc. (1988) | Zbl 0647.46057
, ,[12] Minimization problems with singular data, Milan J. Math. 74 (2006), 265-278 | Zbl 1214.35018
,[13] Uniform estimates and blow-up behavior for solutions of in two dimensions, Comm. Partial Differential Equations 16 (1991), 1223-1253 | Zbl 0746.35006
, ,[14] Semi-linear second order elliptic equations in , J. Math. Soc. Japan 25 (1973), 565-590 | Zbl 0278.35041
, ,[15] A note on limiting cases of Sobolev embeddings, Comm. Partial Differential Equations 5 (1980), 773-789 | Zbl 0437.35071
, ,[16] Sobolev Spaces on Domains, Teubner-Texte Math. vol. 137, B.G. Teubner, Stuttgart (1998) | Zbl 0893.46024
,[17] Higher-order Sobolev and Poincaré inequalities in Orlicz spaces, Forum Math. 18 (2006), 745-767 | Zbl 1120.46015
,[18] Symmetrization and second order Sobolev inequalities, Ann. Mat. Pura Appl. 183 (2004), 45-77 | Zbl 1223.46033
,[19] Sobolev type embeddings in the limiting case, J. Fourier Anal. Appl. 4 (1998), 433-446 | Zbl 0930.46027
, ,[20] Critical exponents, critical dimensions and the biharmonic operator, Arch. Ration. Mech. Anal. 112 (1990), 269-289 | Zbl 0724.35044
, , ,[21] Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms, J. Funct. Anal. 170 (2000), 307-355 | Zbl 0955.46019
, , ,[22] Elliptic Partial Differential Equations of Second Order, Classics Math., Springer-Verlag (1998) | Zbl 0691.35001
, ,[23] Imbedding theorems of Sobolev type in potential theory, Math. Scand. 45 (1979), 77-102 | Zbl 0437.31009
,[24] Conditions of validity of inequalities between -norms of partial derivatives of functions of several variables, Proc. Steklov Inst. Math. 96 (1968), 259-305 | Zbl 0205.41801
,[25] Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Math. vol. 1150, Springer-Verlag, Berlin (1985) | Zbl 0593.35002
,[26] Optimal Sobolev imbeddings, Forum Math. 18 (2006), 535-570 | Zbl 1120.46018
, ,[27] Symmetrization & Applications, Ser. Anal. vol. 3, World Scientific (2006) | Zbl 1110.35002
,[28] Imbedding of Brezis–Wainger type. The case of missing derivatives, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), 667-700 | Zbl 0985.46018
, ,[29] Some new functional spaces, Ann. of Math. 51 (1950), 37-55 | Zbl 0035.35602
,[30] Some estimates for solutions of elliptic second-order equations, Soviet Math. Dokl. 2 (1961), 413-415 | Zbl 0115.08701
,[31] On sharp higher order Sobolev embeddings, Commun. Contemp. Math. 6 (2004), 495-511 | Zbl 1108.46029
, ,[32] Convolution operators and spaces, Duke Math. J. 30 (1963), 129-142 | Zbl 0178.47701
,[33] A non-equality for differential operators in the norm, Arch. Ration. Mech. Anal. 11 (1962), 40-49 | Zbl 0106.29602
,[34] Solvability of linear and semilinear eigenvalue problems with data, Rend. Sem. Mat. Univ. Padova 90 (1993), 207-238 | Numdam | Zbl 0822.35106
,[35] Espaces d'interpolation et théorème de Soboleff, Ann. Inst. Fourier 16 (1966), 279-317 | Numdam | Zbl 0151.17903
,[36] The Sobolev embedding in the case , Proc. Tech. Sci. Conf. on Adv. Sci., Research 1964–1965, Moscow Energy Inst., Mathematics Section, Moscow (1965), 158-170
,[37] An embedding theorem for the Sobolev space , Bull. Sci. Math. 107 no. 2 (1983), 253-259 | Zbl 0529.46025
,[38] Some limit cases of -estimates for solutions of second order elliptic equations, Comm. Pure Appl. Math. 16 (1963), 505-510 | Zbl 0147.09202
,[39] Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press (1970) | Zbl 0207.13501
,[40] A note on Trudinger's extension of Sobolev's inequalities, Indiana Univ. Math. J. 21 (1972), 841-842 | Zbl 0241.46028
,[41] The best Sobolev constant, Appl. Anal. 47 (1992), 227-239 | Zbl 0739.46026
,[42] Elliptic equations and rearrangements, Ann. Sc. Norm. Super. Pisa Cl. Sci. 3 (1976), 697-718 | Numdam | Zbl 0341.35031
,[43] Imbedding theorems of Sobolev spaces into Lorentz spaces, Boll. Unione Mat. Ital. (1998), 479-500 | Zbl 0929.46028
,[44] Best constant for the embedding of the space into , Differential Integral Equations 6 (1993), 259-276 | Zbl 0801.46033
,