For a Gelfand type semilinear elliptic equation we extend some known results for the Dirichlet problem to the Steklov problem. This extension requires some new tools, such as non-optimal Hardy inequalities, and discovers some new phenomena, in particular a different behavior of the branch of solutions and three kinds of blow-up for large solutions in critical growth equations. We also show that small values of the boundary parameter play against strong growth of the nonlinear source.
@article{AIHPC_2010__27_1_315_0, author = {Berchio, Elvise and Gazzola, Filippo and Pierotti, Dario}, title = {Gelfand type elliptic problems under Steklov boundary conditions}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {27}, year = {2010}, pages = {315-335}, doi = {10.1016/j.anihpc.2009.09.011}, mrnumber = {2580512}, zbl = {1184.35132}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2010__27_1_315_0} }
Berchio, Elvise; Gazzola, Filippo; Pierotti, Dario. Gelfand type elliptic problems under Steklov boundary conditions. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) pp. 315-335. doi : 10.1016/j.anihpc.2009.09.011. http://gdmltest.u-ga.fr/item/AIHPC_2010__27_1_315_0/
[1] Hardy–Sobolev inequality in and its applications, Commun. Contemp. Math. 4 (2002), 409-434 | MR 1918752 | Zbl 1005.35072
,[2] Critical heat kernel estimates for Schrodinger operators via Hardy–Sobolev inequalities, J. Funct. Anal. 208 (2004), 1-30 | MR 2034290 | Zbl 1058.35049
, , ,[3] Blow-up for revisited, Adv. Differential Equations 1 (1996), 73-90 | MR 1357955 | Zbl 0855.35063
, , , ,[4] Remarks on the Schrodinger operator with singular complex potentials, J. Math. Pures Appl. 58 (1979), 137-151 | MR 539217 | Zbl 0408.35025
, ,[5] Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid 10 (1997), 443-469 | MR 1605678 | Zbl 0894.35038
, ,[6] Regularity of radial minimizers and extremal solutions of semilinear elliptic equations, J. Funct. Anal. 238 (2006), 709-733 | MR 2253739 | Zbl 1130.35050
, ,[7] Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), 271-297 | MR 982351 | Zbl 0702.35085
, , ,[8] An Introduction to the Study of Stellar Structure, Dover Publ. Inc. (1985) | JFM 65.1543.02 | MR 92663
,[9] Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Ration. Mech. Anal. 58 (1975), 207-218 | MR 382848 | Zbl 0309.35057
, ,[10] On regularity of the extremal solution of the Dirichlet problem for some semilinear elliptic equations of the second order, Commun. Contemp. Math. 9 (2007), 31-39 | MR 2293559 | Zbl 1134.35053
, ,[11] On the nonlinear equations and , Bull. Amer. Math. Soc. 75 (1969), 132-135 | MR 239258 | Zbl 0216.12101
,[12] Quasilinear problems with exponential growth in the reaction term, Nonlinear Anal. 22 (1994), 481-498 | MR 1266373 | Zbl 0804.35037
, , ,[13] Critical growth quasilinear elliptic problems with shifting subcritical perturbation, Differential Integral Equations 14 (2001), 513-528 | MR 1824741 | Zbl 1030.35076
,[14] Some remarks on the equation for varying λ, p and varying domains, Comm. Partial Differential Equations 27 (2002), 809-845 | MR 1900564 | Zbl 1010.35042
, ,[15] Some problems in the theory of quasi-linear equations, Amer. Math. Soc. Transl. 29 (1963), 295-381, Uspekhi Mat. Nauk 14 (1959), 87-158 | MR 110868
,[16] Inequalities, University Press, Cambridge (1934) | MR 46395 | Zbl 0010.10703
, , ,[17] Quasilinear Dirichlet problems driven by positive sources, Arch. Ration. Mech. Anal. 49 (1973), 241-269 | MR 340701 | Zbl 0266.34021
, ,[18] Nonlinear diffusion induced by nonlinear sources, Quart. Appl. Math. 28 (1970), 327-342 | MR 272272 | Zbl 0208.13006
, ,[19] Global structure of solutions for equations of Brezis–Nirenberg type on the unit ball, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), 647-665 | MR 1838505 | Zbl 1114.35320
, , ,[20] Some positone problems suggested by nonlinear heat generation, J. Math. Mech. 16 (1967), 1361-1376 | MR 213694 | Zbl 0152.10401
, ,[21] Regular points for elliptic equations with discontinuous coefficients, Ann. Sc. Norm. Super. Pisa 17 (1963), 43-77 | Numdam | MR 161019 | Zbl 0116.30302
, , ,[22] Uniqueness of weak extremal solutions for nonlinear elliptic problems, Houston J. Math. 23 (1997), 161-168 | MR 1688823 | Zbl 0884.35037
,[23] Sur une classe de problèmes nonlinéaires avec nonlinéarité positive, croissante, convexe, Comm. Partial Differential Equations 5 (1980), 791-836 | MR 583604 | Zbl 0456.35034
, ,[24] Solution radiale singulière de , C. R. Acad. Sci. Paris Sér. I 307 (1988), 379-382 | MR 965802 | Zbl 0683.35032
, ,[25] Regularity of the extremal solution of semilinear elliptic equations, C. R. Acad. Sci. Paris Sér. I 330 (2000), 997-1002 | MR 1779693 | Zbl 0955.35029
,[26] Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations 93 (1991), 283-310 | MR 1125221 | Zbl 0766.35017
,[27] Hardy inequalities with boundary terms, Electron. J. Differential Equations 43 (2003), 1-8 | MR 1971109
, ,