We investigate qualitative properties of strong solutions to a classical system describing the fall of a rigid ball under the action of gravity inside a bounded cavity filled with a viscous incompressible fluid. We prove contact between the ball and the boundary of the cavity implies blow up of strong solutions and such a contact has to occur in finite time under symmetry assumptions on the initial data.
@article{AIHPC_2010__27_1_291_0, author = {Hillairet, Matthieu and Takahashi, Tak\'eo}, title = {Blow up and grazing collision in viscous fluid solid interaction systems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {27}, year = {2010}, pages = {291-313}, doi = {10.1016/j.anihpc.2009.09.007}, mrnumber = {2580511}, zbl = {1187.35290}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2010__27_1_291_0} }
Hillairet, Matthieu; Takahashi, Takéo. Blow up and grazing collision in viscous fluid solid interaction systems. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) pp. 291-313. doi : 10.1016/j.anihpc.2009.09.007. http://gdmltest.u-ga.fr/item/AIHPC_2010__27_1_291_0/
[1] Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations 25 no. 5–6 (2000), 1019-1042 | Zbl 0954.35135
, , ,[2] On the slow motion generated in a viscous fluid by the approach of a sphere to a plane wall or stationary sphere, Mathematika 16 (1969), 37-49 | Zbl 0174.27703
, ,[3] Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal. 146 no. 1 (1999), 59-71 | MR 1682663 | Zbl 0943.35063
, ,[4] On weak solutions for fluid-rigid structure interaction: Compressible and incompressible models, Comm. Partial Differential Equations 25 no. 7–8 (2000), 1399-1413 | MR 1765138 | Zbl 0953.35118
, ,[5] On the motion of rigid bodies in a viscous incompressible fluid, J. Evol. Equ. 3 no. 3 (2003), 419-441 | MR 2019028 | Zbl 1039.76071
,[6] D. Gérard-Varet, M. Hillairet, Regularity issues in the problem of fluid structure interaction, Arch. Ration. Mech. Anal., in press | MR 2592281
[7] Existence for an unsteady fluid–structure interaction problem, M2AN Math. Model. Numer. Anal. 34 no. 3 (2000), 609-636 | Numdam | MR 1763528 | Zbl 0969.76017
, ,[8] Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. Math. Fluid Mech. 2 no. 3 (2000), 219-266 | Zbl 0970.35096
, , ,[9] M. Hillairet, Interactive features in fluid mechanics, PhD thesis, Ecole normale supérieure de Lyon, 2005
[10] Lack of collision between solid bodies in a 2D incompressible viscous flow, Comm. Partial Differential Equations 32 no. 7–9 (2007), 1345-1371 | MR 2354496 | Zbl 1221.35279
,[11] Collisions in three-dimensional fluid structure interaction problems, SIAM J. Math. Anal. 40 no. 6 (2009), 2451-2477 | MR 2481302 | Zbl 1178.35291
, ,[12] On the motion and collisions of rigid bodies in an ideal fluid, Asymptot. Anal. 56 no. 3–4 (2008), 125-158 | MR 2394714 | Zbl 1165.35300
, ,[13] On the slow motion of a sphere parallel to a nearby plane wall, J. Fluid Mech. 27 (1967), 705-724 | MR 210375 | Zbl 0147.45302
, ,[14] Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Ration. Mech. Anal. 161 no. 2 (2002), 113-147 | MR 1870954 | Zbl 1018.76012
, , ,[15] On the nonuniqueness of the solution of the problem of the motion of a rigid body in a viscous incompressible fluid, Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 306 (2003), 199-209, Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funktsii 34 (2003), 231-232 | MR 2065504
,[16] Behavior of a rigid body in an incompressible viscous fluid near a boundary, Free Boundary Problems, Trento, 2002, Internat. Ser. Numer. Math. vol. 147, Birkhäuser, Basel (2004), 313-327 | MR 2044583 | Zbl 1060.76038
,[17] Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, Adv. Differential Equations 8 no. 12 (2003), 1499-1532 | MR 2029294 | Zbl 1101.35356
,[18] Problèmes mathématiques en plasticité, Gauthier–Villars, Montrouge (1983) | MR 711964 | Zbl 0547.73026
,