@article{AIHPC_2009__26_6_2503_0, author = {Agrachev, Andrei A. and Caponigro, M.}, title = {Controllability on the Group of Diffeomorphisms}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {26}, year = {2009}, pages = {2503-2509}, doi = {10.1016/j.anihpc.2009.07.003}, mrnumber = {2569905}, zbl = {pre05649883}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2009__26_6_2503_0} }
Agrachev, A. A.; Caponigro, M. Controllability on the Group of Diffeomorphisms. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) pp. 2503-2509. doi : 10.1016/j.anihpc.2009.07.003. http://gdmltest.u-ga.fr/item/AIHPC_2009__26_6_2503_0/
[1] Control Theory From the Geometric Viewpoint, Springer-Verlag, Berlin, 2004, xiv+412 pp. | MR 2062547 | Zbl 1062.93001
, ,[2] Über Systeme Von Linearen Partiellen Differentialgleichungen Erster Ordinung, Math. Ann. 117 (1939) 98-105. | JFM 65.0398.01 | MR 1880
,[3] A Nonholonomic Moser Theorem and Optimal Mass Transport, J. Symplectic Geom. 7 (4) (2009) 1-34. | MR 2551999 | Zbl pre05663558
, ,[4] On Everywhere Dense Imbedding of Free Groups in Lie Groups, Nagoya Math. J. 2 (1951) 63-71. | MR 41145 | Zbl 0045.31003
,[5] Une Propriété Générique Des Couples De Champs De Vecteurs, Czechoslovak Math. J. 22 (97) (1972) 230-237. | MR 300305 | Zbl 0242.58007
,[6] Structural Stability Theorems, in: Global Analysis, Berkeley, CA, 1968, Proc. Sympos. Pure Math., vol. XIV, Amer. Math. Soc., 1970, pp. 223-231. | MR 267603 | Zbl 0214.50702
, ,[7] About Connecting Two Points of Complete Nonholonomic Space by Admissible Curve, Uch. Zap. Ped. Inst. Libknehta 2 (1938) 83-94.
,[8] Orbits of Families of Vector Fields and Integrability of Distributions, Trans. Amer. Math. Soc. 180 (1973) 171-188. | MR 321133 | Zbl 0274.58002
,[9] Foliations and Groups of Diffeomorphisms, Bull. Amer. Math. Soc. 80 (1974) 304-307. | MR 339267 | Zbl 0295.57014
,