Existence of Minimizers for Kohn-Sham Models in Quantum Chemistry
Anantharaman, Arnaud ; CancèS, Eric
Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009), p. 2425-2455 / Harvested from Numdam
@article{AIHPC_2009__26_6_2425_0,
     author = {Anantharaman, Arnaud and Canc\`eS, Eric},
     title = {Existence of Minimizers for Kohn-Sham Models in Quantum Chemistry},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {26},
     year = {2009},
     pages = {2425-2455},
     doi = {10.1016/j.anihpc.2009.06.003},
     mrnumber = {2569902},
     zbl = {pre05649880},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_2009__26_6_2425_0}
}
Anantharaman, Arnaud; CancèS, Eric. Existence of Minimizers for Kohn-Sham Models in Quantum Chemistry. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) pp. 2425-2455. doi : 10.1016/j.anihpc.2009.06.003. http://gdmltest.u-ga.fr/item/AIHPC_2009__26_6_2425_0/

[1] A. Anantharaman, PhD thesis, Université Paris-Est, Ecole des Ponts, in preparation.

[2] Becke A. D., Density-Functional Exchange-Energy Approximation With Correct Asymptotic Behavior, Phys. Rev. A 38 (1988) 3098-3100.

[3] Blöchl P. E., Projector Augmented-Wave Method, Phys. Rev. B 50 (1994) 17953-17979.

[4] Catto I., Le Bris C., Lions P.-L., On the Thermodynamic Limit for Hartree-Fock Type Models, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (6) (2001) 687-760. | Numdam | MR 1860952 | Zbl 0994.35115

[5] Ceperley D. M., Alder B. J., Ground State of the Electron Gas by a Stochastic Method, Phys. Rev. Lett. 45 (1980) 566-569.

[6] Davidson E. R., Reduced Density Matrices in Quantum Chemistry, Academic Press, New York, 1976.

[7] Dreizler R. M., Gross E. K.U., Density Functional Theory, Springer, 1990. | Zbl 0723.70002

[8] Ekeland I., Nonconvex Minimization Problems, Bull. Amer. Math. Soc. 1 (1979) 443-474. | MR 526967 | Zbl 0441.49011

[9] Frank R. L., Lieb E. H., Seiringer R., Siedentop H., Müller's Exchange-Correlation Energy in Density-Matrix-Functional Theory, Phys. Rev. A 76 (2007) 052517.

[10] Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton Univ. Press, Princeton, 1983. | MR 717034 | Zbl 0516.49003

[11] Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, third ed., Springer, 1998. | Zbl 1042.35002

[12] Hohenberg P., Kohn W., Inhomogeneous Electron Gas, Phys. Rev. B 136 (1964) 864-871. | MR 180312

[13] Kohn W., Sham L. J., Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. A 140 (1965) 1133. | MR 189732

[14] Langreth D. C., Perdew J. P., Theory of Nonuniform Electronic Systems. I. Analysis of the Gradient Approximation and a Generalization That Works, Phys. Rev. B 21 (1980) 5469-5493.

[15] C. Le Bris, Quelques problèmes mathématiques en chimie quantique moléculaire, Thèse de l'Ecole Polytechnique, 1993.

[16] Levy M., Universal Variational Functionals of Electron Densities, First Order Density Matrices, and Natural Spin-Orbitals and Solution of the V-Representability Problem, Proc. Natl. Acad. Sci. USA 76 (1979) 6062-6065. | MR 554891

[17] Lieb E. H., Density Functional for Coulomb Systems, Int. J. Quantum Chem. 24 (1983) 243-277.

[18] Lieb E. H., Loss M., Analysis, Grad. Stud. Math., vol. 14, second ed., Amer. Math. Soc., Providence, RI, 2001. | MR 1817225 | Zbl 0966.26002

[19] Lions P.-L., Solutions of Hartree-Fock Equations for Coulomb Systems, Comm. Math. Phys. 109 (1987) 33-97. | MR 879032 | Zbl 0618.35111

[20] Lions P.-L., The Concentration-Compactness Method in the Calculus of Variations. the Locally Compact Case. Part I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984) 109-145, Part II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984) 223-283. | Numdam | Zbl 0704.49004

[21] L. Tartar, Homogénéisation et compacité par compensation, Cours Peccot au College de France, 1977. | Zbl 0544.47042

[22] Perdew J. P., Burke K., Ernzerhof M., Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865-3868.

[23] Perdew J. P., Wang Y., Accurate and Simple Density Functional for the Electronic Exchange Energy: Generalized Gradient Approximation, Phys. Rev. B 33 (1986) 8800-8802.

[24] Perdew J. P., Wang Y., Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy, Phys. Rev. B 45 (1992) 13244-13249.

[25] Perdew J. P., Zunger A., Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems, Phys. Rev. B 23 (1981) 5048-5079.

[26] Redner S., Citation Statistics From 110 Years of Physical Review, Phys. Today 49 (2005) 49-54.

[27] Reed M., Simon B., Methods of Modern Mathematical Physics, Vol. I, Functional Analysis, second ed., Academic Press, New York, 1980. | MR 751959 | Zbl 0459.46001

[28] Reed M., Simon B., Methods of Modern Mathematical Physics, Vol. IV, Analysis of Operators, Academic Press, New York, 1978. | MR 493421 | Zbl 0401.47001

[29] Simon B., Trace Ideals and Their Applications, London Math. Soc. Lecture Note Ser., vol. 35, Cambridge Univ. Press, 1979. | MR 541149 | Zbl 0423.47001

[30] Stampacchia G., Le Problème De Dirichlet Pour Les Équations Elliptiques Du Second Ordre À Coefficients Discontinus, Ann. Inst. Fourier 15 (1965) 189-257. | Numdam | MR 192177 | Zbl 0151.15401

[31] Troullier N., Martins J. L., Efficient Pseudopotentials for Plane Wave Calculations, Phys. Rev. B 43 (1991) 1993-2006.

[32] Vanderbilt D., Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism, Phys. Rev. B 41 (1990) 7892-7895.

[33] Vosko S. H., Wilk L., Nusair M., Accurate Spin-Dependent Electron Liquid Correlation Energy for Local Spin Density Calculations: a Critical Analysis, Can. J. Phys. 58 (1980) 1200-1211.

[34] Zhislin G. M., A Study of the Spectrum of the Schrödinger Operator for a System of Several Particles, Tr. Mosk. Mat. Obs. 9 (1960) 81-120. | MR 126729 | Zbl 0121.10004

[35] Zhislin G. M., Sigalov A. G., The Spectrum of the Energy Operator for Atoms With Fixed Nuclei on Subspaces Corresponding to Irreducible Representations of the Group of Permutations, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965) 835-860. | MR 194075 | Zbl 0138.39304