A Representation Formula for the Voltage Perturbations Caused by Diametrically Small Conductivity Inhomogeneities. Proof of Uniform Validity
Nguyen, Hoai-Minh ; Vogelius, Michael S.
Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009), p. 2283-2315 / Harvested from Numdam
@article{AIHPC_2009__26_6_2283_0,
     author = {Nguyen, Hoai-Minh and Vogelius, Michael S.},
     title = {A Representation Formula for the Voltage Perturbations Caused by Diametrically Small Conductivity Inhomogeneities. Proof of Uniform Validity},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {26},
     year = {2009},
     pages = {2283-2315},
     doi = {10.1016/j.anihpc.2009.03.005},
     mrnumber = {2569895},
     zbl = {1178.35357},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_2009__26_6_2283_0}
}
Nguyen, Hoai-Minh; Vogelius, Michael S. A Representation Formula for the Voltage Perturbations Caused by Diametrically Small Conductivity Inhomogeneities. Proof of Uniform Validity. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) pp. 2283-2315. doi : 10.1016/j.anihpc.2009.03.005. http://gdmltest.u-ga.fr/item/AIHPC_2009__26_6_2283_0/

[1] Ammari H., Kang H., Reconstruction of Small Inhomogeneities From Boundary Measurements, Lecture Notes in Math., vol. 1846, Springer-Verlag, 2004. | MR 2168949 | Zbl 1113.35148

[2] Astala K., Päivärinta L., Calderón's Inverse Conductivity Problem in the Plane, Ann. of Math. 163 (2006) 265-299. | MR 2195135 | Zbl 1111.35004

[3] Brühl M., Hanke M., Vogelius M. S., A Direct Impedance Tomography Algorithm for Locating Small Inhomogeneities, Numer. Math. 93 (2003) 635-654. | MR 1961882 | Zbl 1016.65079

[4] Capdeboscq Y., Vogelius M. S., A General Representation Formula for Boundary Voltage Perturbations Caused by Internal Conductivity Inhomogeneities of Low Volume Fraction, Math. Model. Numer. Anal. 37 (2003) 159-173. | Numdam | MR 1972656 | Zbl 1137.35346

[5] Cedio-Fengya D. J., Moskow S., Vogelius M. S., Identification of Conductivity Imperfections of Small Diameter by Boundary Measurements. Continuous Dependence and Computational Reconstruction, Inverse Problems 14 (1998) 553-595. | MR 1629995 | Zbl 0916.35132

[6] Friedman A., Vogelius M., Identification of Small Inhomogeneities of Extreme Conductivity by Boundary Measurements: a Theorem on Continuous Dependence, Arch. Ration. Mech. Anal. 105 (1989) 299-326. | MR 973245 | Zbl 0684.35087

[7] Greenleaf A., Lassas M., Uhlmann G., On Nonuniqueness for Calderon's Inverse Problem, Math. Res. Lett. 10 (2003) 685-693. | MR 2024725 | Zbl 1054.35127

[8] Greenleaf A., Lassas M., Uhlmann G., Anisotropic Conductivities That Cannot Be Detected by EIT, Physiological Meas. 24 (2003) 413-419.

[9] Kohn R. V., Shen H., Vogelius M. S., Weinstein M. I., Cloaking Via Change of Variables in Electrical Impedance Tomography, Inverse Problems 24 (2008) 015016, (21 pp). | MR 2384775 | Zbl 1153.35406

[10] Kohn R. V., Vogelius M., Determining Conductivity by Boundary Measurements II. Interior Results, Comm. Pure Appl. Math. 38 (1985) 643-667. | MR 803253 | Zbl 0595.35092

[11] Kohn R. V., Vogelius M., Relaxation of a Variational Method for Impedance Computed Tomography, Comm. Pure Appl. Math. 40 (1987) 745-777. | MR 910952 | Zbl 0659.49009

[12] Nachman A. I., Global Uniqueness for a Two-Dimensional Inverse Boundary Value Problem, Ann. of Math. 143 (1996) 71-96. | MR 1370758 | Zbl 0857.35135

[13] Nedelec J.-C., Acoustic and Electromagnetic Equations, Appl. Math. Sci., vol. 144, Springer-Verlag, 2001. | MR 1822275 | Zbl 0981.35002

[14] Pendry J. B., Schurig D., Smith D. R., Controlling Electromagnetic Fields, Science 312 (2006) 1780-1782. | MR 2237570

[15] Sylvester J., Uhlmann G., A Global Uniqueness Theorem for an Inverse Boundary Value Problem, Ann. of Math. 125 (1987) 153-169. | MR 873380 | Zbl 0625.35078