@article{AIHPC_2009__26_6_2211_0, author = {Colin, M. and Colin, Th. and Ohta, M.}, title = {Stability of Solitary Waves for a System of Nonlinear Schr\"odinger Equations With Three Wave Interaction}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {26}, year = {2009}, pages = {2211-2226}, doi = {10.1016/j.anihpc.2009.01.011}, mrnumber = {2569892}, zbl = {1180.35478}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2009__26_6_2211_0} }
Colin, M.; Colin, Th.; Ohta, M. Stability of Solitary Waves for a System of Nonlinear Schrödinger Equations With Three Wave Interaction. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) pp. 2211-2226. doi : 10.1016/j.anihpc.2009.01.011. http://gdmltest.u-ga.fr/item/AIHPC_2009__26_6_2211_0/
[1] Instabilité Des États Stationnaires Dans Les Équations De Schrödinger Et De Klein-Gordon Non Linéaires, C. R. Acad. Sci. Paris Sér. I Math. 293 (1981) 489-492. | MR 646873 | Zbl 0492.35010
, ,[2] Semilinear Schrödinger Equations, Courant Lect. Notes Math. 10, Amer. Math. Soc., 2003. | MR 2002047 | Zbl 1055.35003
,[3] Orbital Stability of Standing Waves for Some Nonlinear Schrödinger Equations, Comm. Math. Phys. 85 (1982) 549-561. | MR 677997 | Zbl 0513.35007
, ,[4] Spectra of Linearized Operators for NLS Solitary Waves, SIAM J. Math. Anal. 39 (2007/2008) 1070-1111. | MR 2368894 | Zbl 1168.35041
, , , ,[5] On a Quasi-Linear Zakharov System Describing Laser-Plasma Interactions, Differential Integral Equations 17 (2004) 297-330. | MR 2037980 | Zbl 1174.35528
, ,[6] A Numerical Model for the Raman Amplification for Laser-Plasma Interaction, J. Comput. Appl. Math. 193 (2006) 535-562. | MR 2229560 | Zbl 1092.35101
, ,[7] Instability of Stationary Bubbles, SIAM J. Math. Anal. 26 (1995) 566-582. | MR 1325903 | Zbl 0823.35017
,[8] The Black Solitons of One-Dimensional NLS Equations, Nonlinearity 20 (2007) 461-496. | MR 2290470 | Zbl 1128.35095
, ,[9] Nonlinear Bound States Outside an Insulated Sphere, Comm. Partial Differential Equations 19 (1994) 177-197. | MR 1257002 | Zbl 0807.35134
, ,[10] Remarks on the Stable Standing Waves for Nonlinear Schrödinger Equations With Double Power Nonlinearity, Adv. Math. Sci. Appl. 13 (2003) 549-564. | MR 2029931 | Zbl 1051.35085
,[11] A Spectral Mapping Theorem and Invariant Manifolds for Nonlinear Schrödinger Equations, Indiana Univ. Math. J. 49 (2000) 221-243. | MR 1777032 | Zbl 0969.35123
, , , ,[12] Stability Theory of Solitary Waves in the Presence of Symmetry, I, J. Funct. Anal. 74 (1987) 160-197. | MR 901236 | Zbl 0656.35122
, , ,[13] Stability Theory of Solitary Waves in the Presence of Symmetry, II, J. Funct. Anal. 94 (1990) 308-348. | MR 1081647 | Zbl 0711.58013
, , ,[14] Stability and Instability of Solitary Waves for One-Dimensional Singular Schrödinger Equations, Differential Integral Equations 6 (1993) 685-703. | MR 1202566 | Zbl 0783.35071
, ,[15] Uniqueness of Positive Solutions of in , Arch. Ration. Mech. Anal. 105 (1989) 234-266. | MR 969899 | Zbl 0676.35032
,[16] Analysis, Grad. Stud. Math., vol. 14, second ed., Amer. Math. Soc., 2001. | MR 1817225 | Zbl 0966.26002
, ,[17] A Remark on Linearly Unstable Standing Wave Solutions to NLS, Nonlinear Anal. 64 (2006) 657-676. | MR 2197087 | Zbl 1091.35093
,[18] Instability of Nonlinear Bound States, Comm. Math. Phys. 100 (1985) 173-190. | MR 804458 | Zbl 0603.35007
, ,[19] Spectral Condition for Instability, in: Contemp. Math., vol. 255, 2000, pp. 189-198. | MR 1752509 | Zbl 0960.47033
, ,[20] The Nonlinear Schrödinger Equation: Self-Focusing and Wave-Collapse, Appl. Math. Sci., vol. 139, Springer-Verlag, 1999. | MR 1696311 | Zbl 0928.35157
, ,[21] Lyapunov Stability of Ground States of Nonlinear Dispersive Evolution Equations, Comm. Pure Appl. Math. 39 (1986) 51-68. | MR 820338 | Zbl 0594.35005
,[22] Modulational Stability of Ground States of Nonlinear Schrödinger Equations, SIAM J. Math. Anal. 16 (1985) 472-491. | MR 783974 | Zbl 0583.35028
,