@article{AIHPC_2009__26_5_2025_0,
author = {Girinon, Vincent},
title = {Navier-Stokes Equations With Nonhomogeneous Boundary Conditions in a Convex Bi-Dimensional Domain},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
volume = {26},
year = {2009},
pages = {2025-2053},
doi = {10.1016/j.anihpc.2008.12.007},
mrnumber = {2566720},
zbl = {1176.35128},
language = {en},
url = {http://dml.mathdoc.fr/item/AIHPC_2009__26_5_2025_0}
}
Girinon, Vincent. Navier-Stokes Equations With Nonhomogeneous Boundary Conditions in a Convex Bi-Dimensional Domain. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) pp. 2025-2053. doi : 10.1016/j.anihpc.2008.12.007. http://gdmltest.u-ga.fr/item/AIHPC_2009__26_5_2025_0/
[1] , Ordinary Differential Equations. an Introduction to Nonlinear Analysis, de Gruyter Stud. Math., de Gruyter, 1990. | MR 1071170 | Zbl 0708.34002
[2] , Dynamics of Viscous Compressible Fluids, Oxford Lecture Ser. Math. Appl., vol. 26, Oxford University Press, 2003. | MR 2040667 | Zbl 1080.76001
[3] , On Compactness of Solutions to the Isentropic Navier-Stokes Equations When the Density Is Not Square Integrable, Comment. Math. Univ. Carolin. 42 (1) (2001) 83-98. | MR 1825374 | Zbl 1115.35096
[4] , , , On Existence of Globally Defined Weak Solution to the Navier-Stokes Equations, J. Math. Fluid Mech. 3 (2001) 358-392. | MR 1867887 | Zbl 0997.35043
[5] V. Girinon, Quelques problèmes aux limites pour les équations de Navier-Stokes, Thèse de l'Université de Toulouse III, 2008.
[6] , Mathematical Topics in Fluid Mechanics, Vol. 1: Incompressible Models, Oxford Lecture Ser. Math. Appl., vol. 10, Oxford University Press, 1996. | MR 1422251 | Zbl 0866.76002
[7] , Mathematical Topics in Fluid Mechanics, Vol. 2: Compressible Models, Oxford Lecture Ser. Math. Appl., vol. 10, Oxford University Press, 1998. | MR 1637634 | Zbl 0908.76004
[8] , Compressible Navier-Stokes Model With Inflow-Outflow Boundary Conditions, J. Math. Fluid Mech. 7 (2005) 485-514. | MR 2189672 | Zbl 1090.35139
[9] , , Introduction to the Mathematical Theory of Compressible Flow, Oxford Lecture Ser. Math. Appl., vol. 27, Oxford University Press, 2004. | MR 2084891 | Zbl 1088.35051