@article{AIHPC_2009__26_5_2025_0, author = {Girinon, Vincent}, title = {Navier-Stokes Equations With Nonhomogeneous Boundary Conditions in a Convex Bi-Dimensional Domain}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {26}, year = {2009}, pages = {2025-2053}, doi = {10.1016/j.anihpc.2008.12.007}, mrnumber = {2566720}, zbl = {1176.35128}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2009__26_5_2025_0} }
Girinon, Vincent. Navier-Stokes Equations With Nonhomogeneous Boundary Conditions in a Convex Bi-Dimensional Domain. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) pp. 2025-2053. doi : 10.1016/j.anihpc.2008.12.007. http://gdmltest.u-ga.fr/item/AIHPC_2009__26_5_2025_0/
[1] Ordinary Differential Equations. an Introduction to Nonlinear Analysis, de Gruyter Stud. Math., de Gruyter, 1990. | MR 1071170 | Zbl 0708.34002
,[2] Dynamics of Viscous Compressible Fluids, Oxford Lecture Ser. Math. Appl., vol. 26, Oxford University Press, 2003. | MR 2040667 | Zbl 1080.76001
,[3] On Compactness of Solutions to the Isentropic Navier-Stokes Equations When the Density Is Not Square Integrable, Comment. Math. Univ. Carolin. 42 (1) (2001) 83-98. | MR 1825374 | Zbl 1115.35096
,[4] On Existence of Globally Defined Weak Solution to the Navier-Stokes Equations, J. Math. Fluid Mech. 3 (2001) 358-392. | MR 1867887 | Zbl 0997.35043
, , ,[5] V. Girinon, Quelques problèmes aux limites pour les équations de Navier-Stokes, Thèse de l'Université de Toulouse III, 2008.
[6] Mathematical Topics in Fluid Mechanics, Vol. 1: Incompressible Models, Oxford Lecture Ser. Math. Appl., vol. 10, Oxford University Press, 1996. | MR 1422251 | Zbl 0866.76002
,[7] Mathematical Topics in Fluid Mechanics, Vol. 2: Compressible Models, Oxford Lecture Ser. Math. Appl., vol. 10, Oxford University Press, 1998. | MR 1637634 | Zbl 0908.76004
,[8] Compressible Navier-Stokes Model With Inflow-Outflow Boundary Conditions, J. Math. Fluid Mech. 7 (2005) 485-514. | MR 2189672 | Zbl 1090.35139
,[9] Introduction to the Mathematical Theory of Compressible Flow, Oxford Lecture Ser. Math. Appl., vol. 27, Oxford University Press, 2004. | MR 2084891 | Zbl 1088.35051
, ,