@article{AIHPC_2009__26_5_1853_0, author = {Anker, Jean-Philippe and Pierfelice, Vittoria}, title = {Nonlinear Schr\"odinger Equation on Real Hyperbolic Spaces}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {26}, year = {2009}, pages = {1853-1869}, doi = {10.1016/j.anihpc.2009.01.009}, mrnumber = {2566713}, zbl = {1176.35166}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2009__26_5_1853_0} }
Anker, Jean-Philippe; Pierfelice, Vittoria. Nonlinear Schrödinger Equation on Real Hyperbolic Spaces. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) pp. 1853-1869. doi : 10.1016/j.anihpc.2009.01.009. http://gdmltest.u-ga.fr/item/AIHPC_2009__26_5_1853_0/
[1] Fourier Multipliers on Riemannian Symmetric Spaces of the Noncompact Type, Ann. of Math. 132 (1990) 597-628. | MR 1078270 | Zbl 0741.43009
,[2] Spherical Analysis on Harmonic an Groups, Ann. Sc. Norm. Super. Pisa 33 (1996) 643-679. | Numdam | MR 1469569 | Zbl 0881.22008
, , ,[3] The Nonlinear Schrödinger Equation on the Hyperbolic Space, Comm. Partial Differential Equations 32 (10) (2007) 1643-1677, arXiv:math/0406058. | MR 2372482 | Zbl 1143.35091
,[4] Scattering Theory for Radial Nonlinear Schrödinger Equations on Hyperbolic Space, Geom. Funct. Anal. 18 (2) (2008) 367-399. | MR 2421543 | Zbl pre05313040
, , ,[5] Fourier Transformation Restriction Phenomena for Certain Lattice Subsets and Application to the Nonlinear Evolution Equations I - Schrödinger Equations, Geom. Funct. Anal. 3 (2) (1993) 107-156. | MR 1209299 | Zbl 0787.35097
,[6] Strichartz Inequalities and the Nonlinear Schrödinger Equation on Compact Manifolds, Amer. J. Math. 126 (3) (2004) 569-605. | MR 2058384 | Zbl 1067.58027
, , ,[7] Herz's “principe De Majoratio” and the Kunze-Stein Phenomenon, in: Harmonic Analysis and Number Theory, Montreal, 1996, CMS Conf. Proc., vol. 21, Amer. Math. Soc., 1997, pp. 73-88. | MR 1472779 | Zbl 0964.22008
,[8] P. Gérard, V. Pierfelice, Nonlinear Schrödinger equation on four-dimensional compact manifolds, Bull. Soc. Math. Fr., in press.
[9] Generalized Strichartz Inequalities for the Wave Equation, J. Funct. Anal. 133 (1) (1995) 50-68. | MR 1351643 | Zbl 0849.35064
, ,[10] Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, 1978, Amer. Math. Soc., 2001. | MR 1834454 | Zbl 0451.53038
,[11] Groups and Geometric Analysis (Integral Geometry, Invariant Differential Operators, and Spherical Functions), Academic Press, 1984, Amer. Math. Soc., 2002. | MR 754767 | Zbl 0543.58001
,[12] Geometric Analysis on Symmetric Spaces, Amer. Math. Soc., 1994. | MR 1280714 | Zbl 0809.53057
,[13] An Endpoint Estimate for the Kunze-Stein Phenomenon and Related Maximal Operators, Ann. of Math. (2) 152 (1) (2000) 259-275. | MR 1792296 | Zbl 0970.43002
,[14] A.D. Ionescu, G. Staffilani, Semilinear Schrödinger flows on hyperbolic spaces - scattering in , preprint, 2008. | Zbl pre05598897
[15] On Nonlinear Schrödinger Equations, Ann. Inst. H. Poincaré (A) Phys. Theor. 46 (1) (1987) 113-129. | Numdam | MR 877998 | Zbl 0632.35038
,[16] Endpoint Strichartz Estimates, Amer. J. Math. 120 (5) (1998) 955-980. | MR 1646048 | Zbl 0922.35028
, ,[17] Weighted Strichartz Estimates for the Radial Perturbed Schrödinger Equation on the Hyperbolic Space, Manuscripta Math. 120 (4) (2006) 377-389. | MR 2245889 | Zbl 1128.35028
,[18] Weighted Strichartz Estimates for the Schrödinger and Wave Equations on Damek-Ricci Spaces, Math. Z. 260 (2) (2008) 377-392. | MR 2429618 | Zbl 1153.35074
,[19] Global Well-Posedness and Scattering for the Defocusing Mass-Critical Nonlinear Schrödinger Equation for Radial Data in High Dimensions, Duke Math. J. 140 (1) (2007) 165-202. | MR 2355070 | Zbl pre05208403
, , ,