@article{AIHPC_2009__26_5_1621_0, author = {Bandeira, Lu\'\i S and Pedregal, Pablo}, title = {Finding New Families of Rank-One Convex Polynomials}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {26}, year = {2009}, pages = {1621-1634}, doi = {10.1016/j.anihpc.2008.08.002}, mrnumber = {2566703}, zbl = {pre05612920}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2009__26_5_1621_0} }
Bandeira, LuíS; Pedregal, Pablo. Finding New Families of Rank-One Convex Polynomials. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) pp. 1621-1634. doi : 10.1016/j.anihpc.2008.08.002. http://gdmltest.u-ga.fr/item/AIHPC_2009__26_5_1621_0/
[1] An Example of a Quasiconvex Function Not Polyconvex in Dimension 2, Arch. Rational Mech. Anal. 117 (1992) 155-166. | MR 1145109 | Zbl 0761.26009
, ,[2] Convexity Conditions and Existence Theorems in Nonlinear Elasticity, Arch. Rational Mech. Anal. 63 (1977) 337-403. | MR 475169 | Zbl 0368.73040
,[3] Direct Methods in the Calculus of Variations, Springer, 1989. | MR 990890 | Zbl 0703.49001
,[4] Some Examples of Rank One Convex Functions in Dimension Two, Proc. Roy. Soc. Edinburgh Sect. A 114 (1-2) (1990) 135-150. | MR 1051612 | Zbl 0722.49018
, , , ,[5] A Counterexample in the Vectorial Calculus of Variations, in: Material Instabilities in Continuum Mechanics, Oxford Sci. Publ., Oxford Univ. Press, New York, 1988, pp. 77-83. | MR 970519 | Zbl 0641.49007
, ,[6] A Necessary Condition for the Quasiconvexity of Polynomials of Degree Four, J. Convex Anal. 13 (1) (2006) 51-60. | MR 2211803 | Zbl 1115.49016
,[7] Quasiconvexity and the Lower Semicontinuity of Multiple Integrals, Pacific J. Math. 2 (1952) 25-53. | MR 54865 | Zbl 0046.10803
,[8] Laminates and Microstructure, Eur. J. Appl. Math. 4 (2) (1993) 121-149. | MR 1228114 | Zbl 0779.73050
,[9] Computing Parametric Geometric Resolutions, Appl. Algebra Engrg. Comm. Comput. 13 (5) (2003) 349-393. | MR 1959170 | Zbl 1058.68123
,[10] Elimination Methods, Texts and Monographs in Symbolic Computation, Springer, 2001. | MR 1826878 | Zbl 0964.13014
,[11] Comprehensive Gröbner Bases, J. Symbolic Comput. 14 (1992) 1-29. | MR 1177987 | Zbl 0784.13013
,