@article{AIHPC_2009__26_4_1483_0, author = {Jurdjevic, V.}, title = {The Symplectic Structure of Curves in Three Dimensional Spaces of Constant Curvature and the Equations of Mathematical Physics}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {26}, year = {2009}, pages = {1483-1515}, doi = {10.1016/j.anihpc.2008.12.006}, mrnumber = {2542734}, zbl = {1176.53075}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2009__26_4_1483_0} }
Jurdjevic, V. The Symplectic Structure of Curves in Three Dimensional Spaces of Constant Curvature and the Equations of Mathematical Physics. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) pp. 1483-1515. doi : 10.1016/j.anihpc.2008.12.006. http://gdmltest.u-ga.fr/item/AIHPC_2009__26_4_1483_0/
[1] Foundations of Mechanics, Benjamin-Cummings, Reading, MA, 1978. | MR 515141 | Zbl 0393.70001
, ,[2] Topological Methods in Hydrodynamics, Appl. Math. Sci., vol. 125, Springer-Verlag, New York, 1998. | MR 1612569 | Zbl 0902.76001
, ,[3] Loop Spaces, Characteristic Classes and Geometric Quantization, Progr. Math., vol. 108, Birkhäuser, Boston, 1993. | MR 1197353 | Zbl 0823.55002
,[4] A Stable Manifold Theorem for the Curve Shortening Equation, Comm. Pure Appl. Math. XL (1987) 119-139. | MR 865360 | Zbl 0602.34026
, ,[5] Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, Berlin, 1980. | Zbl 1111.37001
, ,[6] The Inverse Function Theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1972) 65-221. | MR 656198 | Zbl 0499.58003
,[7] Motion of a Vortex Filament and Its Relation to Elastica, J. Phys. Soc. Japan 31 (1971) 293-294.
,[8] A Soliton on a Vortex Filament, J. Fluid Mech. 51 (1972) 477-485. | Zbl 0237.76010
,[9] Knot Types, Homotopies and Stability of Closed Elastic Curves, Proc. London Math. Soc. 79 (3) (1999) 429-450. | MR 1702249 | Zbl 1036.53001
, ,[10] Hamiltonian Systems on Complex Lie Groups and Their Homogeneous Spaces, Mem. Amer. Math. Soc. 178 (838) (2005). | MR 2173602 | Zbl 1085.53071
,[11] Geometric Control Theory, Cambridge Studies in Advanced Mathematics, vol. 51, Cambridge Univ. Press, New York, 1997. | MR 1425878 | Zbl 0940.93005
,[12] Hamiltonian Systems on Lie Groups: Elastic Curves, Tops and Constrained Geodesic Problems, in: Non-Linear Geometric Control Theory and Its Applications, World Scientific Publishing Co., Singapore, 2002, pp. 3-52. | MR 1881484 | Zbl 1142.49317
, ,[13] Hamiltonian Systems on Lie Groups: Kowalewski Type, Ann. Math. 150 (1999) 1-40. | MR 1726703 | Zbl 0953.37012
,[14] Poisson Geometry of the Filament Equation, J. Nonlinear Sci. 1 (1978) 71-93. | MR 1102831 | Zbl 0795.35115
, ,[15] A Simple Model for the Integrable Hamiltonian Equation, J. Math. Phys. 19 (1978) 1156-1162. | MR 488516 | Zbl 0383.35065
,[16] A Kähler Structure on the Moduli Spaces of Isometric Maps of a Circle Into Euclidean Spaces, Invent. Math. 123 (1) (1996) 35-59. | MR 1376245 | Zbl 0859.58007
, ,[17] Exact Theory of Two Dimensional Self-Focusing and One Dimensional Self-Modulation of Waves in Non-Linear Media, Sov. Phys. JETP 34 (1972) 62-69. | MR 406174
, ,[18] Lectures on Differential Geometry, Prentice-Hall Inc., Englewood-Cliffs, NJ, 1964. | MR 193578 | Zbl 0129.13102
,