@article{AIHPC_2009__26_3_841_0,
author = {Kappeler, Thomas and P\"oSchel, J\"uRgen},
title = {On the Periodic KdV Equation in Weighted Sobolev Spaces},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
volume = {26},
year = {2009},
pages = {841-853},
doi = {10.1016/j.anihpc.2008.03.004},
mrnumber = {2526404},
zbl = {1177.35199},
language = {en},
url = {http://dml.mathdoc.fr/item/AIHPC_2009__26_3_841_0}
}
Kappeler, Thomas; PöSchel, JüRgen. On the Periodic KdV Equation in Weighted Sobolev Spaces. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) pp. 841-853. doi : 10.1016/j.anihpc.2008.03.004. http://gdmltest.u-ga.fr/item/AIHPC_2009__26_3_841_0/
[1] , , , Rational and Elliptic Solutions of the Korteweg-De Vries Equation and a Related Many-Body Problem, Comm. Pure Appl. Math 30 (1977) 95-148. | MR 649926 | Zbl 0338.35024
[2] , , , , On the Symplectic Structure of the Phase Space for Periodic KdV, Toda, and Defocusing NLS, Duke Math. J. 79 (1995) 549-604. | MR 1355177 | Zbl 0855.58035
[3] , , , On the Korteweg-De Vries Equation: Frequencies and Initial Value Problem, Pacific J. Math 181 (1997) 1-55. | MR 1491035 | Zbl 0899.35096
[4] , , , Algebraic Lower Bounds for the Uniform Radius of Spatial Analyticity for the Generalized KdV Equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005) 783-797. | Numdam | MR 2172859 | Zbl 1095.35039
[5] , , The Initial-Value Problem for the Korteweg-De Vries Equation, Philos. Trans. Roy. Soc. London Ser. A 278 (1975) 555-601. | MR 385355 | Zbl 0306.35027
[6] , Fourier Transform Restriction Phenomena for Certain Lattice Subsets and Applications to Nonlinear Evolution Equations, II: the KdV-Equation, Geom. Funct. Anal. 3 (1993) 209-262. | MR 1215780 | Zbl 0787.35098
[7] , On the Cauchy Problem for Periodic KdV-Type Equations, J. Fourier Anal. Appl. Special Issue (1995) 17-86. | MR 1364878 | Zbl 0891.35137
[8] , Periodic Korteweg-De Vries Equation With Measures as Initial Data, Selecta Math. (N.S.) 3 (1997) 115-159. | MR 1466164 | Zbl 0891.35138
[9] , Global Solutions of Nonlinear Schrödinger Equations, Amer. Math. Soc. Colloq. Publ., American Mathematical Society, Providence, RI, 1999. | MR 1691575 | Zbl 0933.35178
[10] , , , , , Sharp Global Well-Posedness for KdV and Modified KdV on and , J. Amer. Math. Soc. 16 (2003) 705-749. | MR 1969209 | Zbl 1025.35025
[11] , , , , , Local and Global Well-Posedness for Non-Linear Dispersive and Wave Equations, www.math.ucla.edu/~tao/Dispersive.
[12] , , Smoothness of Schrödinger Operator Potential in the Case of Gevrey Type Asymptotics of the Gaps, J. Funct. Anal. 195 (2002) 89-128. | MR 1934354 | Zbl 1037.34080
[13] , , Spectral Triangles of Schrödinger Operators With Complex Potentials, Selecta Math. (N.S.) 9 (2003) 495-528. | MR 2031750 | Zbl 1088.34072
[14] , , Instability Zones of One-Dimensional Periodic Schrödinger and Dirac Operators, Uspekhi Mat. Nauk 61 (2006) 77-182, (in Russian). | MR 2279044 | Zbl 1128.47041
[15] , Spectral Analysis of a Class of Second Order Nonselfadjoint Differential Operators, Funct. Anal. Appl. 14 (1980) 14-19. | MR 565091 | Zbl 0574.34012
[16] , , , A Note on Gaps of Hill's Equation, Int. Math. Res. Not. 50 (2004) 2703-2717. | MR 2127368 | Zbl 1082.34072
[17] , , Local Well-Posedness of the Generalized Korteweg-De Vries Equation in Spaces of Analytic Functions, Differential Integral Equations 15 (2002) 1325-1334. | MR 1920689 | Zbl 1031.35124
[18] , , On the Birkhoff Coordinates for KdV, Ann. Henri Poincaré 2 (2001) 807-856. | MR 1869523 | Zbl 1017.76015
[19] , , Gap Estimates of the Spectrum of Hill's Equation and Action Variables for KdV, Trans. Amer. Math. Soc. 351 (1999) 619-646. | MR 1473448 | Zbl 0924.58074
[20] , , Estimates for Periodic and Dirichlet Eigenvalues of the Schrödinger Operator, SIAM J. Math. Anal. 33 (2001) 113-152. | MR 1857991 | Zbl 1097.34553
[21] , , KdV & KAM, Springer, Berlin, 2003. | MR 1997070
[22] , , Global Wellposedness of KdV in , Duke Math. J. 135 (2006) 327-360. | MR 2267286 | Zbl 1106.35081
[23] , , , On the Cauchy Problem for the Korteweg-De Vries Equation in Sobolev Spaces of Negative Indices, Duke Math. J. 71 (1993) 1-20. | MR 1230283 | Zbl 0787.35090
[24] , , , A Bilinear Estimate With Applications to the KdV Equation, J. Amer. Math. Soc. 9 (1996) 573-603. | MR 1329387 | Zbl 0848.35114
[25] , Perturbation Theory for Quasiperiodic Solutions of Infinite-Dimensional Hamiltonian Systems, and Its Application to the Korteweg-De Vries Equation, Mat. Sb. 136 (1988), (in Russian). English translation in, Math. USSR Sb. 64 (1989) 397-413. | MR 959490 | Zbl 0678.58037
[26] , Nearly Integrable Infinite-Dimensional Hamiltonian Systems, Lecture Notes in Mathematics, vol. 1556, Springer, 1993. | MR 1290785 | Zbl 0784.58028
[27] , A Kam-Theorem for Equations of the Korteweg-De Vries Type, Rev. Math. Phys. 10 (1998) 1-64. | MR 1754991 | Zbl 0920.35135
[28] , Analysis of Hamiltonian PDEs, Oxford University Press, Oxford, 2000. | MR 1857574 | Zbl 0960.35001
[29] , , A Characterization of the Spectrum of Hill's Operator, Math. USSR Sb. 97 (1975) 493-554. | Zbl 0343.34016
[30] , , Problems and Theorems in Analysis I, Springer, New York, 1976. | Zbl 0338.00001
[31] J. Pöschel, Hill's potential in weighted Sobolev spaces and their spectral gaps, Preprint, http://www.poschel.de/pbl.
[32] , , Inverse Spectral Theory, Academic Press, Boston, 1987. | MR 894477 | Zbl 0623.34001
[33] , On the Korteweg-De Vries Equation: Existence and Uniqueness, J. Math. Anal. Appl. 29 (1970) 569-579. | MR 410135 | Zbl 0179.43101
[34] , Sur Un Problème Non Linéaire, J. Math. Pures Appl. 48 (1969) 159-172. | MR 261183 | Zbl 0187.03902
[35] , Characterization of Hill Operators With Analytic Potentials, Integral Equations Operator Theory 41 (2001) 360-380. | MR 1853676 | Zbl 0994.34015
[36] , The Inverse Problem for Periodic Potentials, Comm. Pure Appl. Math. 30 (1977) 321-342. | MR 430403 | Zbl 0403.34022