@article{AIHPC_2009__26_1_271_0, author = {Zygouras, Nikos}, title = {Exponential Convergence for a Periodically Driven Semilinear Heat Equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {26}, year = {2009}, pages = {271-284}, doi = {10.1016/j.anihpc.2008.01.003}, mrnumber = {2483822}, zbl = {1177.35118}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2009__26_1_271_0} }
Zygouras, Nikos. Exponential Convergence for a Periodically Driven Semilinear Heat Equation. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) pp. 271-284. doi : 10.1016/j.anihpc.2008.01.003. http://gdmltest.u-ga.fr/item/AIHPC_2009__26_1_271_0/
[1] Diffusions and Elliptic Operators, Probability and Its Applications (New York), Springer-Verlag, New York, 1998, xiv+232 pp. | MR 1483890 | Zbl 0914.60009
,[2] Asymptotic Analysis for Periodic Structures, North Holl. Comp., 1978. | MR 503330 | Zbl 0404.35001
, , ,[3] Stochastic Calculus. a Practical Introduction, Probability and Stochastics Series, CRC Press, Boca Raton, FL, 1996, x+341 pp. | MR 1398879 | Zbl 0856.60002
,[4] Uniqueness of the Invariant Measure for a Stochastic PDE Driven by Degenerate Noise, Comm. Math. Phys. 219 (3) (2001) 523-565. | MR 1838749 | Zbl 0983.60058
, ,[5] Malliavin Calculus for Highly Degenerate 2D Stochastic Navier-Stokes Equations, C. R. Math. Acad. Sci. Paris, Ser. I 339 (11) (2004) 793-796. | MR 2110383 | Zbl 1059.60074
, , ,[6] Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992. | MR 1212084 | Zbl 0777.35001
,[7] Topics in Propagation of Chaos, in: École D'Été De Probabilités De Saint-Flour XIX-1989, Lecture Notes in Math., vol. 1464, Springer, Berlin, 1991, pp. 165-251. | MR 1108185 | Zbl 0732.60114
,