@article{AIHPC_2009__26_1_1_0, author = {Hang, Fengbo and Wang, Xiaodong and Yan, Xiaodong}, title = {An Integral Equation in Conformal Geometry}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {26}, year = {2009}, pages = {1-21}, doi = {10.1016/j.anihpc.2007.03.006}, mrnumber = {2483810}, zbl = {1154.45004}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2009__26_1_1_0} }
Hang, Fengbo; Wang, Xiaodong; Yan, Xiaodong. An Integral Equation in Conformal Geometry. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) pp. 1-21. doi : 10.1016/j.anihpc.2007.03.006. http://gdmltest.u-ga.fr/item/AIHPC_2009__26_1_1_0/
[1] Sobolev Spaces, Pure and Applied Mathematics, vol. 65, second ed., Academic Press, New York-London, 2003. | MR 2424078 | MR 450957 | Zbl 0314.46030
,[2] Spherical Rearrangements, Sub-Harmonic Functions and *-Functions in N-Space, Duke Math. J. 43 (1976) 245-268. | MR 402083 | Zbl 0331.31002
, ,[3] Zur Theorie Der Minimalflächen, Math. Z. 9 (1921) 154-160. | JFM 48.0590.02 | MR 1544458
,[4] The Yamabe Problem on Manifolds With Boundary, J. Differential Geom. 35 (1) (1992) 21-84. | MR 1152225 | Zbl 0771.53017
,[5] Conformal Deformation of a Riemannian Metric to a Scalar Flat Metric With Constant Mean Curvature on the Boundary, Ann. of Math. (2) 136 (1) (1992) 1-50. | MR 1173925 | Zbl 0766.53033
,[6] Elliptic Partial Differential Equations of Second Order, second ed., third printing, Springer-Verlag, Berlin, 1998. | Zbl 0562.35001
, ,[7] F.B. Hang, X.D. Wang, X.D. Yan, Sharp integral inequalities for harmonic functions, Comm. Pure Appl. Math., in press. | MR 2361304 | Zbl 1173.26321
[8] S. Jacobs, An isoperimetric inequality for functions analytic in multiply connected domains, Mittag-Leffler Institute report, 1972.
[9] The Yamabe Problem, Bull. Amer. Math. Soc. (N.S.) 17 (1) (1987) 37-91. | MR 888880 | Zbl 0633.53062
, ,[10] The Concentration-Compactness Principle in the Calculus of Variations. the Limit Case. II, Rev. Mat. Iberoamericana 1 (2) (1985) 45-121. | MR 850686 | Zbl 0704.49006
,[11] Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, vol. 32, Princeton University Press, Princeton, NJ, 1971. | MR 304972 | Zbl 0232.42007
, ,