@article{AIHPC_2008__25_6_1221_0, author = {Bostan, Mihai and Goudon, Thierry}, title = {High-electric-field limit for the Vlasov-Maxwell-Fokker-Planck system}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {25}, year = {2008}, pages = {1221-1251}, doi = {10.1016/j.anihpc.2008.07.004}, mrnumber = {2466328}, zbl = {1157.35486}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2008__25_6_1221_0} }
Bostan, Mihai; Goudon, Thierry. High-electric-field limit for the Vlasov-Maxwell-Fokker-Planck system. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) pp. 1221-1251. doi : 10.1016/j.anihpc.2008.07.004. http://gdmltest.u-ga.fr/item/AIHPC_2008__25_6_1221_0/
[1] Low and high field scaling limits for the Vlasov- and Wigner-Poisson-Fokker-Planck system, Transport Theory Statist. Phys. 30 (2-3) (2001) 121-153. | MR 1848592 | Zbl 1106.82381
, , , ,[2] On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Partial Differential Equations 26 (1-2) (2001) 43-100. | MR 1842428 | Zbl 0982.35113
, , , ,[3] Hypercontractivité de semi-groupes de diffusion, C. R. Acad. Sci. Paris Sér. I Math. 299 (15) (1984) 775-778. | MR 772092 | Zbl 0563.60068
, ,[4] Fluid dynamic limits of kinetic equations II. Convergence proofs for the Boltzmann equation, Comm. Pure Appl. Math. XLVI (1993) 667-753. | MR 1213991 | Zbl 0817.76002
, , ,[5] High field approximation of the spherical harmonics expansion model for semiconductors, Z. Angew. Math. Phys. 52 (2) (2001) 201-230. | MR 1834528 | Zbl 1174.82345
, , , ,[6] Physique des plasmas, EDP Sciences, 2000.
, ,[7] From kinetic equations to multidimensional isentropic gas dynamics before shocks, SIAM J. Math. Anal. 36 (6) (2005) 1807-1835. | MR 2178222 | Zbl 1130.35090
, ,[8] Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system; the one and one half dimensional case, Kinetic Related Models 1 (1) (2008) 139-169. | MR 2383720 | Zbl pre05300207
, ,[9] Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions, J. Funct. Anal. 111 (1993) 239-258. | MR 1200643 | Zbl 0777.35059
,[10] Smoothing effect for the nonlinear Vlasov-Poisson-Fokker-Planck system, J. Differential Equations 122 (1995) 225-238. | MR 1355890 | Zbl 0840.35053
,[11] Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system, Arch. Ration. Mech. Anal. 170 (1) (2003) 1-15. | MR 2012645 | Zbl 1044.76075
, , ,[12] Éléments de Mathématiques, Fascicule XXXV, Livre VI, Chapitre IX, Intégration, Hermann, Paris, 1969. | Zbl 0026.38902
,[13] Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations 25 (2000) 737-754. | MR 1748352 | Zbl 0970.35110
,[14] Incompressible Euler and e-MHD as scaling limits of the Vlasov-Maxwell system, Commun. Math. Sci. 1 (3) (2003) 437-447. | MR 2069939 | Zbl 1089.35048
, , ,[15] On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in spaces, Math. Methods Appl. Sci. 18 (10) (1995) 825-839. | MR 1343393 | Zbl 0829.35096
, ,[16] Global solutions for the one-dimensional Vlasov-Maxwell system for laser-plasma interaction, Math. Models Methods Appl. Sci. 16 (1) (2006) 19-57. | MR 2194980 | Zbl 1106.35110
, ,[17] High field approximations to a Boltzmann-Poisson system and boundary conditions in a semiconductor, Appl. Math. Lett. 10 (4) (1997) 111-117. | MR 1458163 | Zbl 0894.76072
, , ,[18] Brownian motion, dynamical friction and stellar dynamics, Rev. Mod. Phys. 21 (1949) 383-388. | MR 31822 | Zbl 0036.43003
,[19] Information-type measures of difference of probability distributions and indirect observations, Studia Sci. Math. Hungar. 2 (1967) 299-318. | MR 219345 | Zbl 0157.25802
,[20] Global existence of smooth solutions for the Vlasov-Fokker-Planck equations in 1 and 2 space dimensions, Ann. Scient. Ecole Normale Sup. 19 (1986) 519-542. | Numdam | MR 875086 | Zbl 0619.35087
,[21] High field approximation of the energy-transport model for semiconductors with non-parabolic band structure, Z. Angew. Math. Phys. 52 (6) (2001) 1053-1070. | MR 1877692 | Zbl 0991.35043
, ,[22] Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math. 42 (6) (1989) 729-757. | MR 1003433 | Zbl 0698.35128
, ,[23] B. Dubroca, R. Duclous, F. Filbet, V. Tikhonchuk, High order resolution of the Maxwell-Fokker-Planck-Landau model intended for ICF/Fast ignition applications, CELIA-Université Bordeaux 1, in preparation.
[24] Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Ration. Mech. Anal. 9 (1) (1986) 59-90. | MR 816621 | Zbl 0595.35072
, ,[25] The Vlasov-Poisson system with strong magnetic field in quasineutral regime, Math. Models Methods Appl. Sci. 13 (5) (2003) 661-714. | MR 1978931 | Zbl 1053.82032
, ,[26] Multidimensional high-field limit of the electrostatic Vlasov-Poisson-Fokker-Planck system, J. Differential Equations 213 (2) (2005) 418-442. | MR 2142374 | Zbl 1072.35176
, , , ,[27] Hydrodynamic limit for the Vlasov-Poisson-Fokker-Planck system: Analysis of the two-dimensional case, Math. Models Methods Appl. Sci. 15 (5) (2005) 737-752. | MR 2139941 | Zbl 1074.82021
,[28] Hydrodynamic limits for the Vlasov-Navier-Stokes equations. Part II: Fine particles regime, Indiana Univ. Math. J. 53 (2004) 1517-1536. | MR 2106334 | Zbl 1085.35117
, , ,[29] The Vlasov-Maxwell-Boltzmann system near Maxwellians, Invent. Math. 153 (3) (2003) 593-630. | MR 2000470 | Zbl 1029.82034
,[30] V. Grandgirard, Y. Sarrazin, X. Garbet, G. Dif-Pradalier, P. Ghendrih, N. Crouseilles, G. Latu, E. Sonnendrucker, N. Besse, P. Bertrand, GYSELA, a full-f global gyrokinetic semi-Lagrangian code for ITG turbulence simulations, in: Proceedings of Theory of Fusion Plasmas, Varenna, 2006.
[31] A new approach to study the Vlasov-Maxwell system, Comm. Pure Appl. Anal. 1 (1) (2002) 103-125. | MR 1877669 | Zbl 1037.35088
, ,[32] A lower bound for discrimination information in terms of variation, IEEE Trans. Inform. Theory 4 (1967) 126-127.
,[33] On the one and one-half dimensional relativistic Vlasov-Maxwell-Fokker-Planck system with non-vanishing viscosity, Math. Meth. Appl. Sci. 21 (1998) 1287-1296. | MR 1642550 | Zbl 0911.35091
,[34] Quantum hydrodynamics for semiconductors in the high field case, Appl. Math. Lett. 7 (5) (1994) 37-41. | MR 1350607 | Zbl 0814.35128
, ,[35] High-field limit of the Vlasov-Poisson-Fokker-Planck system, Arch. Ration. Mech. Anal. 158 (2001) 29-59. | MR 1834113 | Zbl 1038.82068
, , ,[36] On classical solutions of the Vlasov-Poisson-Fokker-Planck system, Indiana Univ. Math. J. 39 (1) (1990) 105-156. | MR 1052014 | Zbl 0674.60097
, ,[37] Runaway phenomena and fluid approximation under high fields in semiconductors kinetic theory, Z. Angew. Math. Mech. 72 (1992) 359-372. | MR 1178932 | Zbl 0785.76067
,[38] Parabolic limit and stability of the Vlasov-Poisson-Fokker-Planck system, Math. Models Methods Appl. Sci. 10 (7) (2000) 1027-1045. | MR 1780148 | Zbl 1018.76048
, ,[39] Quasineutral limit for the relativistic Vlasov-Maxwell system, Asymptotic Anal. 40 (2004) 303-352. | MR 2107635 | Zbl 1072.35181
, ,[40] Convergence of solutions to the Boltzmann equation in the incompressible Euler limit, Arch. Ration. Mech. Anal. 166 (2003) 47-80. | MR 1952079 | Zbl 1016.76071
,[41] Recent results on hydrodynamic limits, in: , (Eds.), Handbook of Differential Equations: Evolutionary Equations, vol. 4, Elsevier, 2008. | MR 2508169 | Zbl pre05635159
,[42] On the existence of global weak solutions for the Vlasov-Poisson-Fokker-Planck system, J. Math. Anal. Appl. 160 (2) (1991) 525-555. | MR 1126136 | Zbl 0764.35024
,[43] An existence and uniqueness theorem for the Vlasov-Maxwell system, Comm. Pure Appl. Math. 37 (1984) 457-462. | MR 745326 | Zbl 0592.45010
,[44] Relative entropy and hydrodynamics of Ginzburg-Landau models, Lett. Math. Phys. 22 (1) (1991) 63-80. | MR 1121850 | Zbl 0725.60120
,[45] Global classical solution of the Vlasov-Maxwell-Landau system near Maxwellians, J. Math. Phys. 45 (11) (2004) 4360-4376. | MR 2098143 | Zbl 1064.82035
,