@article{AIHPC_2008__25_6_1073_0, author = {D'Apice, Ciro and De Maio, Umberto and Kogut, Peter I.}, title = {Suboptimal boundary controls for elliptic equation in critically perforated domain}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {25}, year = {2008}, pages = {1073-1101}, doi = {10.1016/j.anihpc.2007.07.001}, mrnumber = {2466322}, zbl = {1170.35015}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2008__25_6_1073_0} }
D'Apice, Ciro; De Maio, Umberto; Kogut, Peter I. Suboptimal boundary controls for elliptic equation in critically perforated domain. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) pp. 1073-1101. doi : 10.1016/j.anihpc.2007.07.001. http://gdmltest.u-ga.fr/item/AIHPC_2008__25_6_1073_0/
[1] Homogenization of thin structures by two-scale method with respect to measures, SIAM J. Math. Anal. 32 (6) (2001) 1198-1226. | MR 1856245 | Zbl 0986.35015
, ,[2] G. Buttazzo, Γ-convergence and its applications to some problem in the calculus of variations, in: School on Homogenization, ICTP, Trieste, September 6-17, 1993, 1994, pp. 38-61.
[3] Γ-convergence and optimal control problems, J. Optim. Theory Appl. 32 (1982) 385-407. | MR 686213 | Zbl 0471.49012
, ,[4] Unbounded Functionals in the Calculus of Variations. Representation, Relaxation, and Homogenization, Chapman and Hall/CRC, New York, 2002. | MR 1910459 | Zbl 1002.49018
, ,[5] Homogenization in perforated domains with mixed conditions, Nonlinear Diff. Equ. Appl. 9 (2002) 246-325. | MR 1917377 | Zbl 1046.35007
, , ,[6] Existence of a sequence satisfying Cioranescu-Murat conditions in homogenization of Dirichlet problems in perforated domains, Rend. Mat. Appl. (7) 16 (1996) 387-413. | MR 1422390 | Zbl 0870.35013
,[7] Homogenization and correctors for the wave equation in domains with small holes, Ann. Sc. Norm. Super. Pisa, Sc. Fis. Mat. 17 (4) (1991) 251-293. | Numdam | MR 1129303 | Zbl 0807.35077
, , , ,[8] Exact boundary controllability for the wave equation in domains with small holes, J. Math. Pures Appl. 71 (1992) 343-377. | MR 1176016 | Zbl 0843.35009
, , ,[9] Un terme étrage venu d'ailleurs, in: Nonlinear Partial Differential Equations and their applications. Collége de France Seminar, Research Notes in Mathematics, Pitman, London, 1981, vol. II, pp. 58-138, vol. III, pp. 157-178. | Zbl 0498.35034
, ,[10] Homogenization in open sets with holes, J. Math. Anal. Appl. 71 (1978) 590-607. | MR 548785 | Zbl 0427.35073
, ,[11] Nonhomogeneous Neumann problems in domains with small holes, Modélisation Mathématique et Analyse Numérique 22 (4) (1988) 561-608. | Numdam | MR 974289 | Zbl 0669.35028
, ,[12] A homogenization problem in a perforated domain with both Dirichlet and Neumann conditions on the boundary of the holes, Asymptodic Anal. 31 (2002) 297-316. | MR 1937842 | Zbl 1043.35027
, , ,[13] Exact boundary controllability of a nonlinear KdV equation with critical length, J. Eur. Math. Soc. (JEMS) 6 (3) (2004) 367-398. | MR 2060480 | Zbl 1061.93054
, ,[14] Asymptotic behaviour and correctors for Dirichlet problem in perforated domains with homogeneous monotone operators, Ann. Sc. Norm. Sup. Pisa Cl. Sci. 24 (4) (1997) 239-290. | Numdam | MR 1487956 | Zbl 0899.35007
, ,[15] Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL, 1992. | MR 1158660 | Zbl 0804.28001
, ,[16] Optimal Control of Distributed Systems. Theory and Applications, Amer. Math. Soc., 2000. | MR 1726442 | Zbl 1027.93500
,[17] Theory of Extremal Problems, Nauka, Moskow, 1974, (in Russian). | MR 410502
, ,[18] Optimal control on perforated domains, J. Math. Anal. Appl. 229 (1999) 563-586. | MR 1666365 | Zbl 0919.49005
, ,[19] S-convergence in homogenization theory of optimal control problems, Ukrain. Mat. Zh. 49 (11) (1997) 1488-1498, (in Russian); English transl. in:, Ukrainian Math. J. 49 (11) (1997) 1671-1682. | MR 1672876 | Zbl 0933.93026
,[20] On S-homogenization of an optimal control problem with control and state constraints, J. Anal. Appl. 20 (2) (2001) 395-429. | MR 1846609 | Zbl 0982.35014
, ,[21] Équations différentielles opérationnelles, Springer-Verlag, Berlin, 1961. | MR 153974 | Zbl 0098.31101
,[22] Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, New York, 1971. | MR 271512 | Zbl 0203.09001
,[23] Boundary Value Problems in Domain with Fine-Grained Boundary, Naukova Dumka, Kyiv, 1974. | Zbl 0289.35002
, ,[24] Convergence of the boundary control for the wave equation in domains with holes of critical size, Electron. J. Differential Equations 2002 (35) (2002) 1-10. | MR 1907711 | Zbl 1007.35007
,[25] On the convergence of hyperbolic semigroups in variable Hilbert spaces, J. Math. Sci. 127 (5) (2005) 2263-2283. | MR 2360842 | Zbl 1126.47038
,[26] Optimal control and “strange term” for the Stokes problem in perforated domains, Portugal. Math. 59 (2) (2002) 161-178. | MR 1907412 | Zbl 1017.49005
, ,[27] Averaging nonlinear Dirichlet problems in domains with channels, Soviet Math. Dokl. 42 (1991) 853-857. | MR 1100827 | Zbl 0757.35027
,[28] On an extension of the method of two-scale convergence and its applications, Sbornik Math. 191 (7) (2000) 973-1014. | MR 1809928 | Zbl 0969.35048
,[29] Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994. | MR 1329546 | Zbl 0838.35001
, , ,