@article{AIHPC_2008__25_4_679_0, author = {Kotschote, Matthias}, title = {Strong solutions for a compressible fluid model of Korteweg type}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {25}, year = {2008}, pages = {679-696}, doi = {10.1016/j.anihpc.2007.03.005}, mrnumber = {2436788}, zbl = {1141.76053}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2008__25_4_679_0} }
Kotschote, Matthias. Strong solutions for a compressible fluid model of Korteweg type. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) pp. 679-696. doi : 10.1016/j.anihpc.2007.03.005. http://gdmltest.u-ga.fr/item/AIHPC_2008__25_4_679_0/
[1] Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Math. Nachr. 186 (1997) 5-56. | MR 1461211 | Zbl 0880.42007
,[2] Diffuse-interface methods in fluid mech, Ann. Rev. Fluid Mech. 30 (1998) 139-165. | MR 1609626
, , ,[3] On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Comm. Partial Differential Equations 28 (3-4) (2003) 843-868. | MR 1978317 | Zbl 1106.76436
, , ,[4] Free energy of a nonuniform system, I. Interfacial free energy, J. Chem. Phys. 28 (1998) 258-267.
, ,[5] Existence of solutions for compressible fluid models of Korteweg type, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (1) (2001) 97-133. | Numdam | MR 1810272 | Zbl 1010.76075
, ,[6] -boundedness and problems of elliptic and parabolic type, Mem. Amer. Math. Soc. 166 (788) (2003), viii+114 pp. | MR 2006641 | Zbl 1274.35002
, , ,[7] On the closedness of the sum of two closed operators, Math. Z. 196 (1987) 189-201. | MR 910825 | Zbl 0615.47002
, ,[8] On the thermomechanics of interstitial working, Arch. Rational Mech. Anal. 88 (2) (1985) 95-133. | MR 775366 | Zbl 0582.73004
, ,[9] A new approach to the regularity of solutions for parabolic equations, in: Evolution Equations, Lecture Notes in Pure and Appl. Math., vol. 234, Dekker, New York, 2003, pp. 167-190. | MR 2073744 | Zbl 1070.35009
, , ,[10] Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci. 6 (6) (1996) 815-831. | MR 1404829 | Zbl 0857.76008
, , ,[11] The existence of global solutions to a fluid dynamic model for materials for Korteweg type, J. Partial Differential Equations 9 (4) (1996) 323-342. | MR 1426082 | Zbl 0881.35095
, ,[12] Global solutions of a high-dimensional system for Korteweg materials, J. Math. Anal. Appl. 198 (1) (1996) 84-97. | MR 1373528 | Zbl 0858.35124
, ,[13] The -calculus and sums of closed operators, Math. Ann. 321 (2) (2001) 319-345. | MR 1866491 | Zbl 0992.47005
, ,[14] M. Kotschote, Strong well-posedness of a model for an ionic exchange process, Thesis, Martin-Luther-Universität Halle-Wittenberg, 2003.
[15] Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs, Amer. Math. Soc., Providence, RI, 1968.
, , ,[16] A joint functional calculus for sectorial operators with commuting resolvents, Proc. London Math. Soc. 77 (1998) 387-414. | MR 1635157 | Zbl 0904.47015
, , ,[17] Maximal regularity for abstract parabolic problems with inhomogeneous boundary data in -spaces, Math. Bohem. 127 (2) (2002) 311-327. | MR 1981536 | Zbl 1010.35064
,[18] On operators with bounded imaginary powers in Banach spaces, Math. Z. 203 (1990) 429-452. | MR 1038710 | Zbl 0665.47015
, ,[19] Coerciveness inequalities for abstract parabolic equations, Soviet Math. (Doklady) 5 (1964) 894-897. | MR 166487 | Zbl 0149.36001
,[20] Interpolation Theory, Function Spaces, Differential Operators, North-Holland, 1978. | MR 503903 | Zbl 0387.46032
,[21] Theory of Function Spaces, Geest & Portig K.-G., Leipzig, 1983. | MR 730762 | Zbl 0546.46028
,[22] Maximal regularity of type for abstract parabolic Volterra equations, J. Evol. Equ. 5 (1) (2005) 79-103. | MR 2125407 | Zbl 1104.45008
,[23] R. Zacher, Quasilinear parabolic integro-differential equations with nonlinear boundary conditions, preprint. | MR 2278673 | Zbl 1212.45015