@article{AIHPC_2008__25_4_659_0, author = {Wang, Changyou and Yu, Yifeng}, title = {${C}^{1}$-regularity of the Aronsson equation in ${R}^{2}$}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {25}, year = {2008}, pages = {659-678}, doi = {10.1016/j.anihpc.2007.03.003}, mrnumber = {2436787}, zbl = {1179.35124}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2008__25_4_659_0} }
Wang, Changyou; Yu, Yifeng. ${C}^{1}$-regularity of the Aronsson equation in ${R}^{2}$. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) pp. 659-678. doi : 10.1016/j.anihpc.2007.03.003. http://gdmltest.u-ga.fr/item/AIHPC_2008__25_4_659_0/
[1] Minimization problems for the functional sup , Ark. Mat. 6 (1965) 33-53. | MR 196551 | Zbl 0156.12502
,[2] Minimization problems for the functional sup . II, Ark. Mat. 6 (1966) 409-431. | MR 203541 | Zbl 0156.12502
,[3] Minimization problems for the functional sup . III, Ark. Mat. 7 (1969) 509-512. | MR 240690 | Zbl 0181.11902
,[4] Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967) 551-561. | MR 217665 | Zbl 0158.05001
,[5] On the partial differential equation , Ark. Mat. 7 (1968) 395-425. | MR 237962 | Zbl 0162.42201
,[6] On certain singular solutions of the partial differential equation , Manuscripta Math. 47 (1-3) (1984) 133-151. | MR 744316 | Zbl 0551.35018
,[7] A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.) 41 (4) (2004) 439-505, (electronic). | MR 2083637 | Zbl 1150.35047
, , ,[8] Viscosity solutions and analysis in , in: Nonlinear Analysis, Differential Equations and Control, Montreal, QC, 1998, NATO Sci. Ser. C Math. Phys. Sci., vol. 528, Kluwer Acad. Publ., Dordrecht, 1999, pp. 1-60. | MR 1695005 | Zbl 0973.49024
,[9] Minimizing the -norm of the gradient with an energy constraint, Comm. Partial Differential Equations 30 (10-12) (2005) 1741-1772. | MR 2182310 | Zbl 1105.35028
, ,[10] Lower semicontinuity of functionals, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (4) (2001) 495-517. | Numdam | MR 1841130 | Zbl 1034.49008
, , ,[11] The Euler equation and absolute minimizers of functionals, Arch. Ration. Mech. Anal. 157 (4) (2001) 255-283. | MR 1831173 | Zbl 0979.49003
, , ,[12] An efficient derivation of the Aronsson equation, Arch. Ration. Mech. Anal. 167 (4) (2003) 271-279. | MR 1981858 | Zbl 1090.35067
,[13] M. Crandall, The infinity-Laplace equation and the elements of calculus of variations in L-infinity, in: CIME Lecture Notes, in press.
[14] M. Crandall, The continuous gradient flow for the infinity-Laplace equation, Private communication.
[15] M. Crandall, L.C. Evans, A remark on infinity harmonic functions, in: Proceedings of the USA-Chile Workshop on Nonlinear Analysis, Via del Mar-Valparaiso, 2000 (electronic), Electron. J. Differ. Equ. Conf., 6, pp. 123-129. | MR 1804769 | Zbl 0964.35061
[16] Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. Partial Differential Equations 13 (2) (2001) 123-139. | MR 1861094 | Zbl 0996.49019
, , ,[17] User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1) (1992) 1-67. | MR 1118699 | Zbl 0755.35015
, , ,[18] Generalized cone comparison principle for viscosity solutions of the Aronsson equation and absolute minimizers, Comm. Partial Differential Equations 31 (7-9) (2006) 1027-1046. | MR 2254602 | Zbl pre05062565
, , ,[19] Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Ration. Mech. Anal. 123 (1) (1993) 51-74. | MR 1218686 | Zbl 0789.35008
,[20] Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math. 2 (1952) 25-53. | MR 54865 | Zbl 0046.10803
,[21] -regularity for infinity harmonic functions in dimensions two, Arch. Ration. Mech. Anal. 176 (3) (2005) 351-361. | MR 2185662 | Zbl 1112.35070
,[22] -variational problems and the Aronsson equations, Arch. Ration. Mech. Anal. 182 (1) (2006) 153-180. | MR 2247955 | Zbl 1130.49025
,