@article{AIHPC_2008__25_3_609_0, author = {Mahmoudi, Fethi and Malchiodi, Andrea and Wei, Juncheng}, title = {Transition layer for the heterogeneous Allen-Cahn equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {25}, year = {2008}, pages = {609-631}, doi = {10.1016/j.anihpc.2007.03.008}, mrnumber = {2422081}, zbl = {1148.35030}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2008__25_3_609_0} }
Mahmoudi, Fethi; Malchiodi, Andrea; Wei, Juncheng. Transition layer for the heterogeneous Allen-Cahn equation. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) pp. 609-631. doi : 10.1016/j.anihpc.2007.03.008. http://gdmltest.u-ga.fr/item/AIHPC_2008__25_3_609_0/
[1] On the singular limit in a phase field model of phase transitions, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (2) (1988) 141-178. | Numdam | MR 954469 | Zbl 0696.35060
, ,[2] Periodic traveling waves and locating oscillating patterns in multidimensional domains, Trans. Amer. Math. Soc. 351 (7) (1999) 2777-2805. | MR 1467460 | Zbl 0929.35067
, , ,[3] Solutions to the nonautonomous bistable equation with specified Morse index. I. Existence, Trans. Amer. Math. Soc. 340 (2) (1993) 641-654. | MR 1167183 | Zbl 0788.34012
, , ,[4] Motion of a droplet by surface tension along the boundary, Cal. Var. Partial Differential Equations 11 (2000) 233-306. | MR 1797871 | Zbl 0994.35052
, , ,[5] A variational approach for a class of singular perturbation problems and applications, Proc. Roy. Soc. Edinburgh Sect. A 107 (1-2) (1987) 27-42. | MR 918891 | Zbl 0651.49011
, ,[6] A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall. 27 (1979) 1084-1095.
, ,[7] Stable transition layers in a semilinear boundary value problem, J. Differential Equations 67 (1987) 212-242. | MR 879694 | Zbl 0634.35041
, , ,[8] On the existence of high multiplicity interfaces, Math. Res. Lett. 3 (1996) 117-131. | MR 1393381 | Zbl 0853.35008
, ,[9] Riemannian Geometry-A Modern Introduction, Cambridge Tracts in Math., vol. 108, Cambridge Univ. Press, Cambridge, 1993. | MR 1271141 | Zbl 0810.53001
,[10] Multi-layer solutions for an elliptic problem, J. Differential Equations 194 (2003) 382-405. | MR 2006218 | Zbl 1109.35042
, ,[11] Construction of various types of solutions for an elliptic problem, Calc. Var. Partial Differential Equations 20 (1) (2004) 93-118. | MR 2047147 | Zbl 1154.35348
, ,[12] Layers with nonsmooth interface in a semilinear elliptic problem, Comm. Partial Differential Equations 17 (9-10) (1992) 1695-1708. | MR 1187626 | Zbl 0786.35057
,[13] Radially symmetric internal layers in a semilinear elliptic system, Trans. Amer. Math. Soc. 347 (12) (1995) 4807-4837. | MR 1303116 | Zbl 0853.35009
,[14] Concentration on curves for nonlinear Schrödinger equations, Comm. Pure Appl. Math. 70 (2007) 113-146. | MR 2270164 | Zbl 1123.35003
, , ,[15] Resonance and interior layers in an inhomogeneous phase transition model, SIAM J. Math. Anal. 38 (5) (2007) 1542-1564. | MR 2286019 | Zbl pre05194945
, , ,[16] Stable transition layers in a semilinear diffusion equation with spatial inhomogeneities in N-dimensional domains, J. Differential Equations 190 (1) (2003) 16-38. | MR 1970954 | Zbl 1019.35008
,[17] Y. Du, K. Nakashima, Morse index of layered solutions to the heterogeneous Allen-Cahn equation, preprint. | MR 2334593 | Zbl 1121.35042
[18] Boundary and interior transition layer phenomena for pairs of second-order differential equations, J. Math. Anal. Appl. 54 (2) (1976) 497-521. | MR 419961 | Zbl 0345.34044
,[19] Interior transition layers of elliptic boundary value problem with a small parameter, Russian Math. Surveys 29 (4) (1974) 103-131. | MR 481510 | Zbl 0309.35035
, ,[20] Higher energy solutions in the theory of phase transitions: a variational approach, J. Differential Equations 169 (2001) 190-207. | MR 1808464 | Zbl 0970.35037
, ,[21] Existence and stability of transition layers, Japan J. Appl. Math. 5 (3) (1988) 367-405. | MR 965871 | Zbl 0669.34027
, ,[22] Perturbation Theory for Linear Operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. | MR 1335452 | Zbl 0836.47009
,[23] Local minimizers and singular perturbations, Proc. Roy. Soc. Edinburgh Sect. A 11 (1989) 69-84. | MR 985990 | Zbl 0676.49011
, ,[24] On the existence and Morse index of solutions to the Allen-Cahn equation in two dimensions, Ann. Mat. Pura Appl. (4) 184 (1) (2005) 17-52. | MR 2128093 | Zbl 1150.35035
,[25] Concentration on minimal submanifolds for a singularly perturbed Neumann problem, Adv. Math. 209 (2) (2007) 460-525. | MR 2296306 | Zbl 1160.35011
, ,[26] Solutions concentrating at curves for some singularly perturbed elliptic problems, C. R. Math. Acad. Sci. Paris, Ser. I 338 (10) (2004) 775-780. | MR 2059486 | Zbl 1081.35044
,[27] Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains, Geom. Funct. Anal. 15 (6) (2005) 1162-1222. | MR 2221246 | Zbl 1087.35010
,[28] Boundary concentration phenomena for a singularly perturbed elliptic problem, Comm. Pure Appl. Math. 55 (2002) 1507-1568. | MR 1923818 | Zbl 1124.35305
, ,[29] Multidimensional boundary layers for a singularly perturbed Neumann problem, Duke Math. J. 124 (1) (2004) 105-143. | MR 2072213 | Zbl 1065.35037
, ,[30] Boundary clustered interfaces for the Allen-Cahn equation, Pacific J. Math. 229 (2) (2007) 447-468. | MR 2276519 | Zbl pre05366202
, , ,[31] Boundary interface for the Allen-Cahn equation, J. Fixed Point Theory Appl. 1 (2) (2007) 305-336. | MR 2336614 | Zbl 1144.35326
, ,[32] The gradient theory of phase transitions and the minimal interface criterion, Arch. Ration. Mech. Anal. 98 (1987) 357-383. | MR 866718 | Zbl 0616.76004
,[33] Singular perturbations as a selection criterion for periodic minimizing sequences, Calc. Var. Partial Differential Equations 1 (2) (1993) 169-204. | MR 1261722 | Zbl 0821.49015
,[34] Multi-layered stationary solutions for a spatially inhomogeneous Allen-Cahn equation, J. Differential Equations 191 (2003) 234-276. | MR 1973289 | Zbl 1034.34024
,[35] Clustering layers and boundary layers in spatially inhomogeneous phase transition problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (1) (2003) 107-143. | Numdam | MR 1958164 | Zbl 1114.35005
, ,[36] Stability of singularly perturbed solutions to systems of reaction-diffusion equations, SIAM J. Math. Anal. 18 (1987) 1726-1770. | MR 911661 | Zbl 0638.35010
, ,[37] From constant mean curvature hypersurfaces to the gradient theory of phase transitions, J. Differential Geom. 64 (2003) 359-423. | MR 2032110 | Zbl 1070.58014
, ,[38] On the convergence of stable phase transitions, Comm. Pure Appl. Math. 51 (1998) 551-579. | MR 1611144 | Zbl 0955.58011
, ,[39] Mixed states for an Allen-Cahn type equation, I, Comm. Pure Appl. Math. 56 (2003) 1078-1134. | MR 1989227 | Zbl pre01981618
, ,[40] Mixed states for an Allen-Cahn type equation, II, Calc. Var. Partial Differential Equations 21 (2004) 157-207. | MR 2085301 | Zbl 1161.35397
, ,[41] Construction and stability an analysis of transition layer solutions in reaction-diffusion systems, Tohoku Math. J. (2) 42 (1) (1990) 17-44. | MR 1036472 | Zbl 0708.35006
,[42] Infinitely many fine modes bifurcating from radially symmetric internal layers, Asymptotic Anal. 42 (1-2) (2005) 55-104. | MR 2133874 | Zbl pre02166289
,[43] Connectivity of phase boundaries in strictly convex domains, Arch. Ration. Mech. Anal. 141 (4) (1998) 375-400. | MR 1620498 | Zbl 0911.49025
, ,