@article{AIHPC_2008__25_2_219_0, author = {Horsin, Thierry}, title = {Local exact lagrangian controllability of the Burgers viscous equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {25}, year = {2008}, pages = {219-230}, doi = {10.1016/j.anihpc.2006.11.009}, mrnumber = {2396520}, zbl = {1145.35330}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2008__25_2_219_0} }
Horsin, Thierry. Local exact lagrangian controllability of the Burgers viscous equation. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) pp. 219-230. doi : 10.1016/j.anihpc.2006.11.009. http://gdmltest.u-ga.fr/item/AIHPC_2008__25_2_219_0/
[1] On the attainable set for scalar nonlinear conservation laws with boundary control, SIAM J. Control Optim. 36 (1) (1998) 290-312. | MR 1616586 | Zbl 0919.35082
, ,[2] Two-dimensional local null controllability of a rigid structure in a Navier-Stokes fluid, C. R. Acad. Sci. Paris, Ser. I 343 (2) (2006) 105-109. | MR 2242041 | Zbl 1099.93006
, ,[3] H. Brezis, T. Cazenave, Semilinear Evolution Equations and Applications in Mechanics and Physics, Pitman Lecture Notes, Addison-Wesley, Reading MA, in press.
[4] Theory of Ordinary Differential Equations, McGraw-Hill Book Company, New York, 1955. | MR 69338 | Zbl 0064.33002
, ,[5] Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations 25 (5-6) (2000) 1019-1042. | MR 1759801 | Zbl 0954.35135
, , ,[6] J.-M. Coron, Control and nonlinearity, in preparation. | Zbl 1140.93002
[7] Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels, C. R. Acad. Sci. Paris 317 (1993) 271-276. | MR 1233425 | Zbl 0781.76013
,[8] On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions, ESAIM Control Optim. Calc. Var. 1 (1995/1996) 35-75, (electronic). | Numdam | MR 1393067 | Zbl 0872.93040
,[9] Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations, ESAIM Control Optim. Calc. Var. 8 (2002) 513-554, A tribute to J.L. Lions. | Numdam | MR 1932962 | Zbl 1071.76012
,[10] Global steady-state controllability of one-dimensional semilinear heat equations, SIAM J. Control Optim. 43 (2) (2004) 549-569, (electronic). | MR 2086173 | Zbl 1101.93011
, ,[11] On weak solutions for fluid-rigid structure interaction: compressible and incompressible models, Comm. Partial Differential Equations 25 (7-8) (2000) 1399-1413. | MR 1765138 | Zbl 0953.35118
, ,[12] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989) 511-547. | MR 1022305 | Zbl 0696.34049
, ,[13] Some control results for simplified one-dimensional models of fluid-solid interaction, Math. Models Methods Appl. Sci. 15 (5) (2005) 783-824. | MR 2139944 | Zbl 1122.93008
, ,[14] Approximate controllability of the semilinear heat equation, Proc. Roy. Soc. Edinburgh Sect. A 125 (1) (1995) 31-61. | MR 1318622 | Zbl 0818.93032
, , ,[15] Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rational Mech. Anal. 43 (1971) 272-292. | MR 335014 | Zbl 0231.93003
, ,[16] Remarks on the controllability of the Burgers equation, C. R. Acad. Sci. Paris, Ser. I 341 (2005) 229-232. | MR 2164677 | Zbl 1073.35033
, ,[17] Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl. (9) 83 (12) (2004) 1501-1542. | MR 2103189 | Zbl pre02164954
, , , ,[18] Controllability of Evolution Equations, Lecture Notes Series, vol. 34, Seoul National University Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996. | MR 1406566 | Zbl 0862.49004
, ,[19] Numerical Approximation of Hyperbolic Systems of Conservation Laws, Applied Mathematical Sciences, vol. 118, Springer-Verlag, New York, 1996. | MR 1410987 | Zbl 0860.65075
, ,[20] S. Guerrero, O.Yu. Imanuvilov, Remarks on global controllability for the Burgers equation with two control forces (2006), submitted for publication. | Numdam | MR 2371111 | Zbl pre05247890
[21] Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques & Applications (Berlin), vol. 26, Springer-Verlag, Berlin, 1997. | MR 1466700 | Zbl 0881.35001
,[22] On the controllability of the Burgers equation, ESAIM Control Optim. Calc. Var. 3 (1998) 83-95, (electronic). | Numdam | MR 1612027 | Zbl 0897.93034
,[23] Application of the exact null controllability of the heat equation to moving sets, C. R. Acad. Sci. Paris, Ser. I 342 (2006) 849-852. | MR 2224634 | Zbl 1138.93013
,[24] On exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Calc. Var. 3 (1998) 97-131, (electronic). | Numdam | MR 1617825 | Zbl 1052.93502
,[25] Remarks on exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Calc. Var. 6 (2001) 39-72, (electronic). | Numdam | MR 1804497 | Zbl 0961.35104
,[26] Approximation of exact boundary controllability problems for the 1-D wave equation by optimization-based methods, in: Recent Advances in Scientific Computing and Partial Differential Equations, Hong Kong, 2002, Contemp. Math., vol. 330, Amer. Math. Soc., Providence, RI, 2003, pp. 133-153. | MR 2011716 | Zbl 1036.65056
, , ,[27] Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations 20 (1-2) (1995) 335-356. | MR 1312710 | Zbl 0819.35071
, ,[28] H. Maillot, E. Zuazua, Mouvement d'une particule dans un fluide, Prepublication, 1999.
[29] Controllability of quantum harmonic oscillators, IEEE Trans. Automat. Control 49 (5) (2004) 745-747. | MR 2057808
, ,[30] Variational assimilation of Lagrangian data in oceanography, Inverse Problems 22 (1) (2006) 245-263. | MR 2194194 | Zbl 1089.86002
,[31] A. Osses, Quelques méthodes théoriques et numériques de contrôlabilité et problèmes d'interactions fluide-structure, PhD thesis, Ecole Polytechnique, Paris, 1998.
[32] Deterministic finite-dimensional systems, in: Mathematical Control Theory, second ed., Texts in Applied Mathematics, vol. 6, Springer-Verlag, New York, 1998, pp. xvi+531. | MR 1640001 | Zbl 0945.93001
,[33] Lack of collision in a simplified 1D model for fluid-solid interaction, Math. Models Methods Appl. Sci. 16 (5) (2006) 637-678. | MR 2226121 | Zbl pre05045353
, ,