@article{AIHPC_2008__25_1_173_0, author = {Dancer, Edward Norman}, title = {Finite Morse index solutions of exponential problems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {25}, year = {2008}, pages = {173-179}, doi = {10.1016/j.anihpc.2006.12.001}, mrnumber = {2383085}, zbl = {1136.35030}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2008__25_1_173_0} }
Dancer, E. N. Finite Morse index solutions of exponential problems. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) pp. 173-179. doi : 10.1016/j.anihpc.2006.12.001. http://gdmltest.u-ga.fr/item/AIHPC_2008__25_1_173_0/
[1] Entire solutions of semilinear elliptic equations in and a conjecture of De Giorgi, J. Amer. Math. Soc. 13 (4) (2000) 725-739, (electronic). | MR 1775735 | Zbl 0968.35041
, ,[2] Solutions of superlinear elliptic equations and their Morse indices, Comm. Pure Appl. Math. 45 (9) (1992) 1205-1215. | MR 1177482 | Zbl 0801.35026
, ,[3] Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math. 106 (3) (1991) 489-539. | MR 1134481 | Zbl 0755.35036
, ,[4] The sub-harmonic bifurcation of Stokes waves, Arch. Ration. Mech. Anal. 152 (3) (2000) 241-271. | MR 1764946 | Zbl 0962.76012
, , ,[5] An Introduction to the Study of Stellar Structure, University of Chicago Press, Chicago, 1939. | JFM 65.1543.02 | Zbl 0022.19207
,[6] Stable and not too unstable solutions on for small diffusion, in: , , (Eds.), Nonlinear Dynamics and Evolution Equations, Fields Institute Communications, Amer. Math. Soc., 2006, pp. 67-94. | MR 2223349 | Zbl pre05035632
,[7] Stable and finite Morse index solutions on or on bounded domains with small diffusion, Trans. Amer. Math. Soc. 357 (3) (2005) 1225-1243. | MR 2110438 | Zbl 1145.35369
,[8] E.N. Dancer, Finite Morse index solutions of supercritical problems, J. Reine Angew. Math., submitted for publication. | MR 2427982 | Zbl 1158.35013
[9] Stable solutions on and the primary branch of some non-self-adjoint convex problems, Differential Integral Equations 17 (9-10) (2004) 961-970. | MR 2082455 | Zbl 1150.35357
,[10] Infinitely many turning points for some supercritical problems, Ann. Mat. Pura Appl. (4) 178 (2000) 225-233. | MR 1849387 | Zbl 1030.35073
,[11] Real analyticity and non-degeneracy, Math. Ann. 325 (2) (2003) 369-392. | MR 1962054 | Zbl 1040.35033
,[12] Subharmonic Functions, Academic Press, London, 1979. | Zbl 0419.31001
, ,[13] Quasilinear Dirichlet problems driven by positive sources, Arch. Ration. Mech. Anal. 49 (1972/73) 241-269. | MR 340701 | Zbl 0266.34021
, ,[14] New Liouville theorems for linear second order degenerate elliptic equations in divergence form, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (1) (2005) 11-23. | Numdam | MR 2114409 | Zbl 1130.35070
,[15] Generic properties of nonlinear boundary value problems, Comm. Partial Differential Equations 4 (3) (1979) 293-319. | MR 522714 | Zbl 0462.35016
, ,[16] Semilinear Elliptic Equations, GAKUTO International Series. Mathematical Sciences and Applications, vol. 3, Gakkōtosho Co. Ltd., Tokyo, 1994. | MR 1428686 | Zbl 0852.35043
,