@article{AIHPC_2007__24_6_989_0, author = {Ben-Artzi, Matania and Le Floch, Philippe}, title = {Well-posedness theory for geometry-compatible hyperbolic conservation laws on manifolds}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {24}, year = {2007}, pages = {989-1008}, doi = {10.1016/j.anihpc.2006.10.004}, mrnumber = {2371116}, zbl = {pre05247895}, zbl = {1138.35055}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2007__24_6_989_0} }
Ben-Artzi, Matania; Le Floch, Philippe G. Well-posedness theory for geometry-compatible hyperbolic conservation laws on manifolds. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) pp. 989-1008. doi : 10.1016/j.anihpc.2006.10.004. http://gdmltest.u-ga.fr/item/AIHPC_2007__24_6_989_0/
[1] Hyperbolic conservation laws on manifolds. Total variation estimates and the finite volume method, Methods Appl. Anal. 12 (2005) 291-324. | MR 2254012 | Zbl 1114.35121
, , ,[2] Hyperbolic Conservation Laws in Continuum Physics, Grundlehren Math. Wiss., vol. 325, Springer-Verlag, 2000. | MR 1763936 | Zbl 0940.35002
,[3] Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal. 88 (1985) 223-270. | MR 775191 | Zbl 0616.35055
,[4] Geometric Measure Theory, Springer-Verlag, New York, 1969. | MR 257325 | Zbl 0176.00801
,[5] Nonlinear Hyperbolic Differential Equations, Math. Appl., vol. 26, Springer-Verlag, 1997. | MR 1466700 | Zbl 0881.35001
,[6] First-order quasilinear equations with several space variables, English transl. in, Math. USSR-Sb. 10 (1970) 217-243. | Zbl 0215.16203
,[7] Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, Regional Conf. Series in Appl. Math., vol. 11, SIAM, Philadelphia, 1973. | MR 350216 | Zbl 0268.35062
,[8] Explicit formula for scalar conservation laws with boundary condition, Math. Methods Appl. Sci. 10 (1988) 265-287. | MR 949657 | Zbl 0679.35065
,[9] Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves, Lectures in Mathematics, ETH Zürich, Birkhäuser, 2002. | MR 1927887 | Zbl 1019.35001
,[10] Explicit formula for weighted scalar non-linear conservation laws, Trans. Amer. Math. Soc. 308 (1988) 667-683. | MR 951622 | Zbl 0674.35058
, ,[11] A Comprehensive Introduction to Differential Geometry, vol. 4, Publish or Perish Inc., Houston, 1979.
,[12] The space BV and quasi-linear equations, Mat. USSR-Sb. 2 (1967) 225-267.
,