@article{AIHPC_2007__24_5_825_0, author = {Lemou, Mohammed and M\'ehats, Florian and Rapha\"el, Pierre}, title = {Uniqueness of the critical mass blow up solution for the four dimensional gravitational Vlasov-Poisson system}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {24}, year = {2007}, pages = {825-833}, doi = {10.1016/j.anihpc.2006.07.003}, zbl = {pre05228824}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2007__24_5_825_0} }
Lemou, Mohammed; Méhats, Florian; Raphaël, Pierre. Uniqueness of the critical mass blow up solution for the four dimensional gravitational Vlasov-Poisson system. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) pp. 825-833. doi : 10.1016/j.anihpc.2006.07.003. http://gdmltest.u-ga.fr/item/AIHPC_2007__24_5_825_0/
[1] Lower bounds for the minimal periodic blow-up solutions of critical nonlinear Schrödinger equation, Differential Integral Equations 15 (6) (2002) 749-768. | MR 1893845 | Zbl 1016.35018
,[2] Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain, Ann. Sc. Norm. Super. Pisa Cl. Sci. 3 (1) (2004) 139-170. | Numdam | MR 2064970 | Zbl pre02217257
,[3] Stationary spherically symmetric models in stellar dynamics, Arch. Rational Mech. Anal. 93 (1986) 159-183. | MR 823117 | Zbl 0605.70008
, , ,[4] Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (4) (1983) 313-345. | MR 695535 | Zbl 0533.35029
, ,[5] Galactic Dynamics, Princeton University Press, 1987. | Zbl 1130.85301
, ,[6] Two singular dynamics of the nonlinear Schrödinger equation on a plane domain, Geom. Funct. Anal. 13 (1) (2003) 1-19. | MR 1978490 | Zbl 1044.35084
, , ,[7] Statistical mechanics and thermodynamic limit of self-gravitating fermions in D dimensions, Phys. Rev. E 69 (2004) 066126. | MR 2096500
,[8] Global weak solutions of kinetic equations, Rend. Sem. Mat. Univ. Politec. Torino 46 (3) (1988) 259-288. | MR 1101105 | Zbl 0813.35087
, ,[9] Solutions globales d'équations du type Vlasov-Poisson, C. R. Acad. Sci. Paris Sér. I Math. 307 (12) (1988) 655-658. | Zbl 0682.35022
, ,[10] Physics of Gravitating Systems, Springer-Verlag, New York, 1984. | Zbl 0543.70010
, ,[11] The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. | MR 1379589 | Zbl 0858.76001
,[12] Blowup theory for the critical nonlinear Schrödinger equations revisited, Int. Math. Res. Not. 46 (2005) 2815-2828. | MR 2180464 | Zbl 1126.35067
, ,[13] Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation, Math. Methods Appl. Sci. 6 (2) (1984) 262-279. | MR 751745 | Zbl 0556.35022
, ,[14] Uniqueness of positive solutions of in , Arch. Rational Mech. Anal. 105 (3) (1989) 243-266. | MR 969899 | Zbl 0676.35032
,[15] On the orbital stability of the ground states and the singularity formation for the gravitational Vlasov Poisson system, C. R. Math. Acad. Sci. Paris, Ser. I 341 (4) (2005) 269-274. | MR 2164685 | Zbl 1073.70012
, , ,[16] M. Lemou, F. Méhats, P. Raphael, On the orbital stability of the ground states and the singularity formation for the gravitational Vlasov Poisson system, preprint.
[17] The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (2) (1984) 109-145. | Numdam | MR 778970 | Zbl 0541.49009
,[18] Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math. 105 (2) (1991). | Zbl 0741.35061
, ,[19] Nonexistence of blow-up solution with minimal -mass for the critical gKdV equation, Duke Math. J. 115 (2) (2002) 385-408. | MR 1944576 | Zbl 1033.35102
, ,[20] Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation, Ann. of Math. (2) 155 (1) (2002) 235-280. | MR 1888800 | Zbl 1005.35081
, ,[21] Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J. 69 (2) (1993) 427-454. | MR 1203233 | Zbl 0808.35141
,[22] Asymptotics for minimal blow-up solutions of critical nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (5) (1996) 553-565. | Numdam | MR 1409662 | Zbl 0862.35013
,[23] On Universality of Blow up Profile for critical nonlinear Schrödinger equation, Invent. Math. 156 (2004) 565-672. | MR 2061329 | Zbl 1067.35110
, ,[24] Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983) 567-576. | MR 691044 | Zbl 0527.35023
,