Nonlinear evolution PDEs in R + ×C d : existence and uniqueness of solutions, asymptotic and Borel summability properties
Costin, O. ; Tanveer, S.
Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007), p. 795-823 / Harvested from Numdam
@article{AIHPC_2007__24_5_795_0,
     author = {Costin, O. and Tanveer, S.},
     title = {Nonlinear evolution PDEs in ${R}^{+}\times {C}^{d}$ : existence and uniqueness of solutions, asymptotic and Borel summability properties},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {24},
     year = {2007},
     pages = {795-823},
     doi = {10.1016/j.anihpc.2006.07.002},
     mrnumber = {2348053},
     zbl = {pre05228823},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_2007__24_5_795_0}
}
Costin, O.; Tanveer, S. Nonlinear evolution PDEs in ${R}^{+}\times {C}^{d}$ : existence and uniqueness of solutions, asymptotic and Borel summability properties. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) pp. 795-823. doi : 10.1016/j.anihpc.2006.07.002. http://gdmltest.u-ga.fr/item/AIHPC_2007__24_5_795_0/

[1] Balser W., From Divergent Power Series to Analytic Functions, Springer-Verlag, Berlin, 1994. | MR 1317343 | Zbl 0810.34046

[2] W. Balser, Multisummability of formal power series solutions of partial differential equations with constant coefficients, preprint. | MR 2057538 | Zbl 1052.35048

[3] Balser W., Divergent solutions of the heat equation: on an article of Lutz, Miyake and Schäfke, Pacific J. Math. 188 (1) (1999) 53-63. | MR 1680415 | Zbl 0960.35045

[4] Bender C., Orszag S., Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, 1978, Springer-Verlag, 1999. | MR 538168 | Zbl 0417.34001

[5] Costin O., On Borel summation and Stokes phenomena for rank-1 nonlinear systems of ordinary differential equations, Duke Math. J. 93 (2) (1998) 289. | MR 1625999 | Zbl 0948.34068

[6] Costin O., Costin R.D., On the formation of singularities of solutions of nonlinear differential systems in antistokes directions, Invent. Math. 45 (3) (2001) 425-485. | MR 1856397 | Zbl 1034.34102

[7] Costin O., Tanveer S., Existence and uniqueness for a class of nonlinear higher-order partial differential equations in the complex plane, Comm. Pure Appl. Math. LIII (2000) 1092-1117. | MR 1761410 | Zbl 1069.35003

[8] Costin O., Topological construction of transseries and introduction to generalized Borel summability, in: Analyzable Functions and Applications, Contemp. Math., vol. 373, Amer. Math. Soc., Providence, RI, 2005, pp. 137-175. | MR 2130829 | Zbl 1072.40004

[9] O. Costin, S. Tanveer, Complex singularity analysis for a nonlinear PDE, Comm. PDE, in press. | Zbl pre05040856

[10] Écalle J., Bifurcations and Periodic Orbits of Vector Fields, NATO ASI Series, vol. 408, 1993.

[11] Écalle J., Fonctions analysables et preuve constructive de la conjecture de Dulac, Hermann, Paris, 1992. | MR 1399559

[12] Lutz D.A., Miyake M., Schäfke R., On the Borel summability of divergent solutions of the heat equation, Nagoya Math. J. 154 (1999) 1. | MR 1689170 | Zbl 0958.35061

[13] Sammartino M., Caflisch R.E., Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations, Comm. Math. Phys. 192 (1998) 433-461. | Zbl 0913.35102

[14] Sammartino M., Caflisch R.E., Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution, Comm. Math. Phys. 192 (1998) 463. | Zbl 0913.35103

[15] Tanveer S., Evolution of Hele-Shaw interface for small surface tension, Philos. Trans. Roy. Soc. London A 343 (1993) 155. | Zbl 0778.76029

[16] Treves F., Basic Linear Partial Differential Equations, Academic Press, 1975. | MR 447753 | Zbl 0305.35001