Lignes de divergence pour les graphes à courbure moyenne constante
Mazet, Laurent
Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007), p. 757-771 / Harvested from Numdam
@article{AIHPC_2007__24_5_757_0,
     author = {Mazet, Laurent},
     title = {Lignes de divergence pour les graphes \`a courbure moyenne constante},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {24},
     year = {2007},
     pages = {757-771},
     doi = {10.1016/j.anihpc.2006.06.004},
     mrnumber = {2348051},
     zbl = {pre05228821},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/AIHPC_2007__24_5_757_0}
}
Mazet, Laurent. Lignes de divergence pour les graphes à courbure moyenne constante. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) pp. 757-771. doi : 10.1016/j.anihpc.2006.06.004. http://gdmltest.u-ga.fr/item/AIHPC_2007__24_5_757_0/

[1] Collin P., Krust R., Le problème de Dirichlet pour l'équation des surfaces minimales sur des domaines non bornés, Bull. Soc. Math. France 119 (1991) 443-462. | Numdam | MR 1136846 | Zbl 0754.53013

[2] Finn R., The Gauss curvature of an H-graph, Nachr. Akad. Wiss. Göttingen 2 (1987). | MR 919511 | Zbl 0645.53003

[3] Hélein F., Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems, Lectures in Mathematics ETH Zürich, Birkhäuser, Basel, 2001. | MR 1844305 | Zbl pre01614154

[4] Jenkins H., Serrin J., Variational problems of minimal surface type II, Arch. Rational Mech. Anal. 21 (1966) 321-342. | MR 190811 | Zbl 0171.08301

[5] L. Mazet, Some uniqueness results for constant mean curvature graphs, Pacific J. Math., in press. | MR 2309165 | Zbl 1154.53008

[6] L. Mazet, Construction de surfaces minimales par résolution du problème de Dirichlet, Thèse de Doctorat, Univ. Toulouse III, 2004.

[7] Mazet L., The Dirichlet problem for the minimal surfaces equation and the Plateau problem at infinity, J. Inst. Math. Jussieu 3 (2004) 397-420. | MR 2074430 | Zbl 1063.53007

[8] Meeks W.H., Ros A., Rosenberg H., The Global Theory of Minimal Surfaces in Flat Spaces, Lecture Notes in Mathematics, vol. 1775, Springer-Verlag, Berlin, 2002.

[9] Serrin J., The Dirichlet problem for surfaces of constant mean curvature, Proc. London Math. Soc. (3) 21 (1970) 361-384. | MR 275336 | Zbl 0199.16604

[10] Serrin J., The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos. Trans. Roy. Soc. London Ser. A 264 (1969) 413-496. | MR 282058 | Zbl 0181.38003

[11] Spruck J., Infinite boundary value problems for surfaces of constant mean curvature, Arch. Rational Mech. Anal. 49 (1972/73) 1-31. | MR 334010 | Zbl 0263.53008