@article{AIHPC_2007__24_4_645_0, author = {Arnold, Anton and Dhamo, Elidon and Manzini, Chiara}, title = {The Wigner-Poisson-Fokker-Planck system : global-in-time solution and dispersive effects}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {24}, year = {2007}, pages = {645-676}, doi = {10.1016/j.anihpc.2006.07.001}, zbl = {1121.82031}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2007__24_4_645_0} }
Arnold, Anton; Dhamo, Elidon; Manzini, Chiara. The Wigner-Poisson-Fokker-Planck system : global-in-time solution and dispersive effects. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) pp. 645-676. doi : 10.1016/j.anihpc.2006.07.001. http://gdmltest.u-ga.fr/item/AIHPC_2007__24_4_645_0/
[1] Self-consistent relaxation-time models in quantum mechanics, Comm. Partial Differential Equations 21 (3&4) (1995) 473-506. | MR 1387456 | Zbl 0849.35113
,[2] On the periodic Wigner-Poisson-Fokker-Planck system, J. Math. Anal. Appl. 275 (2002) 263-276. | Zbl 1014.35084
, , ,[3] An analysis of quantum Fokker-Planck models: A Wigner function approach, Rev. Mat. Iberoamericana 20 (3) (2004) 771-814. | Zbl 1062.35097
, , , ,[4] An operator splitting method for the Wigner-Poisson problem, SIAM J. Numer. Anal. 33 (1996) 1622-1643. | Zbl 0860.65143
, ,[5] Conservative quantum dynamical semigroups for mean-field quantum diffusion models, Comm. Math. Phys. 251 (1) (2004) 179-207. | MR 2096738 | Zbl 1085.82004
, ,[6] Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions, J. Funct. Anal. 111 (1993) 239-258. | Zbl 0777.35059
,[7] Smoothing effect for the non-linear Vlasov-Poisson-Fokker-Planck system, J. Differential Equations 122 (2) (1995) 225-238. | Zbl 0840.35053
,[8] The three-dimensional Wigner-Poisson problem: existence, uniqueness and approximation, Math. Methods Appl. Sci. 14 (1) (1991) 35-61. | Zbl 0739.35080
, ,[9] Path integral approach to quantum Brownian motion, Physica A 121 (1983) 587-616. | MR 726154 | Zbl 0585.60082
, ,[10] Global -theory and regularity for the 3D non-linear Wigner-Poisson-Fokker-Planck system, J. Differential Equations 198 (2004) 356-373. | Zbl 1039.35093
, , ,[11] Long time behavior for solutions of the Vlasov-Poisson-Fokker-Planck equation, Math. Meth. Appl. Sci. 21 (1998) 985-1014. | Zbl 0911.35090
,[12] Asymptotic behaviour and selfsimilarity for the three dimensional Vlasov-Poisson-Fokker-Planck system, J. Funct. Anal. 141 (1996) 99-132. | Zbl 0873.35066
, , ,[13] solutions to the Schrödinger-Poisson system: existence, uniqueness, time behaviour, and smoothing effects, Math. Models Methods Appl. Sci. 7 (8) (1997) 1051-1083. | Zbl 0892.35141
,[14] The Vlasov-Poisson-Fokker-Planck system with infinite kinetic energy, Indiana Univ. Math. J. 47 (3) (1998) 939-964. | Zbl 0926.35004
,[15] Fokker-Planck equations as scaling limits of reversible quantum systems, J. Stat. Phys. 100 (3/4) (2000) 543-601. | Zbl 0988.82038
, , , ,[16] Strichartz estimates for kinetic transport equations, C. R. Acad. Sci. Paris, Ser. I 332 (1) (1996) 535-540. | MR 1383431 | Zbl 0848.35095
, ,[17] On high-temperature Markovian equation for quantum Brownian motion, Europhys. Lett. 22 (1993) 1-3.
,[18] Transport via the Liouville equation and moments of quantum distribution functions, Solid State Electr. 36 (1993) 1697-1709.
, , , ,[19] Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians, Lecture Notes in Mathematics, vol. 1862, Springer-Verlag, Berlin, 2005. | Zbl 1072.35006
, ,[20] Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with high degree potential, Arch. Rational Mech. Anal. 171 (2) (2004). | Zbl pre02102293
, ,[21] Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math. 105 (1991) 415-430. | Zbl 0741.35061
, ,[22] The three dimensional Wigner-Poisson problem with inflow boundary conditions, J. Math. Anal. Appl. 313 (1) (2006) 184-196. | Zbl pre02239434
,[23] An analysis of the Wigner-Poisson problem with time-dependent, inflow boundary conditions, Nonlin. Anal. 60 (1) (2004) 77-100. | Zbl 1084.81051
, ,[24] An analysis of the quantum Liouville equation, Z. Angew. Math. Mech. 69 (1989) 121-127. | MR 990011 | Zbl 0682.46047
, ,[25] Semiconductor Equations, Springer, 1990. | MR 1063852 | Zbl 0765.35001
, , ,[26] Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, 1983. | MR 710486 | Zbl 0516.47023
,[27] Time decay, propagation of low moments and dispersive effects for kinetic equations, Comm. Partial Differential Equations 21 (1&2) (1996) 659-686. | MR 1387464 | Zbl 0852.35139
,[28] Methods of Modern Mathematical Physics I, Functional Analysis, Academic Press, 1980. | MR 751959 | Zbl 0459.46001
, ,[29] The Fokker-Planck Equation, Springer, 1984. | Zbl 0546.60084
,[30] On the long time behavior of the quantum Fokker-Planck equation, Monatsh. Math. 141 (3) (2004) 237-257. | Zbl 1061.35095
, , , ,[31] Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970. | MR 290095 | Zbl 0207.13501
,[32] The one-dimensional Wigner-Poisson problem and its relation to the Schrödinger-Poisson problem, SIAM J. Math. Anal. 22 (4) (1992) 957-972. | Zbl 0738.35077
,[33] Moment-equation representation of the dissipative quantum Liouville equation, Superlattices and Microstructures 2 (1986) 83-87.
,[34] On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40 (1932) 749-759. | JFM 58.0948.07
,