@article{AIHPC_2007__24_4_605_0, author = {D'Aprile, Teresa and Wei, Juncheng}, title = {Clustered solutions around harmonic centers to a coupled elliptic system}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {24}, year = {2007}, pages = {605-628}, doi = {10.1016/j.anihpc.2006.04.003}, mrnumber = {2334995}, zbl = {pre05181994}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2007__24_4_605_0} }
D'Aprile, Teresa; Wei, Juncheng. Clustered solutions around harmonic centers to a coupled elliptic system. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) pp. 605-628. doi : 10.1016/j.anihpc.2006.04.003. http://gdmltest.u-ga.fr/item/AIHPC_2007__24_4_605_0/
[1] Semiclassical states of nonlinear Schrödinger equations, Arch. Rational Mech. Anal. 140 (1997) 285-300. | MR 1486895 | Zbl 0896.35042
, , ,[2] Multiplicity results for some nonlinear Schrödinger equations with potentials, Arch. Rational Mech. Anal. 159 (3) (2001) 253-271. | MR 1857674 | Zbl 1040.35107
, , ,[3] Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, I, Comm. Math. Phys. 235 (3) (2003) 427-466. | MR 1974510 | Zbl 1072.35019
, , ,[4] Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, II, Indiana Univ. Math. J. 53 (2) (2004) 297-329. | MR 2056434 | Zbl 1081.35008
, , ,[5] Harmonic radius and concentration of energy, hyperbolic radius and Liouville’s equations, and , SIAM Rev. 38 (2) (1996) 191-238. | MR 1391227 | Zbl 0857.35034
, ,[6] An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal. 11 (2) (1998) 283-293. | Zbl 0926.35125
, ,[7] On the strict concavity of the harmonic radius in dimension , J. Math. Pures Appl. 81 (3) (2002) 223-240. | MR 1894062 | Zbl 1027.31003
, ,[8] The Gierer & Meinhardt system: the breaking of homopclinics and multi-bump ground states, Commun. Contemp. Math. 3 (3) (2001) 419-439. | MR 1849649 | Zbl 1003.34025
, , ,[9] Uniqueness of the ground state solution of in , , Comm. Partial Differential Equations 16 (8-9) (1991) 1549-1572. | Zbl 0753.35034
, ,[10] Solitary waves for Maxwell-Schrödinger equations, Electronic J. Differential Equations 2004 (94) (2004) 1-31. | Zbl 1064.35180
, ,[11] A note on asymptotic uniqueness for some nonlinearities which change sign, Bull. Austral. Math. Soc. 61 (2000) 305-312. | MR 1748710 | Zbl 0945.35031
,[12] On the profile of solutions with two sharp layers to a singularly perturbed semilinear Dirichlet problem, Proc. Roy. Soc. Edinburgh Sect. A 127 (4) (1997) 691-701. | MR 1465415 | Zbl 0882.35052
, ,[13] Multipeak solutions for a singular perturbed Neumann problem, Pacific J. Math. 189 (2) (1999) 241-262. | MR 1696122 | Zbl 0933.35070
, ,[14] Existence of solitary waves for the nonlinear Klein-Gordon Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A 134 (5) (2004) 893-906. | Zbl 1064.35182
, ,[15] On bound states concentrating on spheres for the Maxwell-Schrödinger equation, SIAM J. Math. Anal. 37 (1) (2005) 321-342. | Zbl 1096.35017
, ,[16] Standing waves in the Maxwell-Schrödinger equation and an optimal configuration problem, Calc. Var. Partial Differential Equations 25 (1) (2006) 105-137. | Zbl pre05009622
, ,[17] Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations 4 (2) (1996) 121-137. | MR 1379196 | Zbl 0844.35032
, ,[18] Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (2) (1998) 127-149. | Numdam | MR 1614646 | Zbl 0901.35023
, ,[19] Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal. 149 (1) (1997) 245-265. | MR 1471107 | Zbl 0887.35058
, ,[20] Semi-classical states of nonlinear Schrödinger equations: a variational reduction method, Math. Ann. 324 (1) (2002) 1-32. | MR 1931757 | Zbl 1030.35031
, ,[21] Multi-bump ground states for the Gierer-Meinhardt system in , Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (1) (2003) 53-85. | Numdam | Zbl 1114.35065
, , ,[22] Partial Differential Equations, American Mathematical Society, Providence, RI, 1998. | MR 1625845 | Zbl 0902.35002
,[23] Nonspreading wave pockets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69 (3) (1986) 397-408. | MR 867665 | Zbl 0613.35076
, ,[24] Symmetry of positive solutions of nonlinear elliptic equations in , Adv. Math. Suppl. Stud. 7A (1981) 369-402. | MR 634248 | Zbl 0469.35052
, , ,[25] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, Heidelberg, 2001. | MR 1814364 | Zbl 0361.35003
, ,[26] Some results on a class of nonlinear Schrödinger equations, Math. Z. 235 (4) (2000) 687-705. | MR 1801580 | Zbl 0970.35039
,[27] Multipeak solutions for a semilinear Neumann problem, Duke Math. J. 84 (3) (1996) 739-769. | MR 1408543 | Zbl 0866.35039
,[28] On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math. 52 (3) (2000) 522-538. | MR 1758231 | Zbl 0949.35052
, ,[29] Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (1) (2000) 47-82. | Numdam | MR 1743431 | Zbl 0944.35020
, , ,[30] Discretizing manifolds via minimum energy points, Notices Amer. Math. Soc. 51 (10) (2004) 1186-1194. | MR 2104914 | Zbl 1095.49031
, ,[31] Introduction to Potential Theory, John Wiley & Sons Inc., New York, 1969. | MR 261018 | Zbl 0188.17203
,[32] Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calc. Var. Partial Differential Equations 21 (3) (2004) 287-318. | MR 2094325 | Zbl 1060.35012
, ,[33] On interacting bumps of semiclassical states of nonlinear Schrödinger equations, Adv. Differential Equations 5 (7-9) (2000) 899-928. | Zbl pre01700753
, ,[34] Uniqueness of positive solutions of in , Arch. Rational Mech. Anal. 105 (3) (1989) 243-266. | MR 969899 | Zbl 0676.35032
,[35] On a singularly perturbed elliptic equation, Adv. Differential Equations 6 (2) (1997) 955-980. | MR 1606351 | Zbl 1023.35500
,[36] On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math. 44 (7) (1991) 819-851. | MR 1115095 | Zbl 0754.35042
, ,[37] Existence of semi-classical bound states of nonlinear Schrödinger equation with potential on the class , Comm. Partial Differential Equations 13 (12) (1988) 1499-1519. | MR 970154
,[38] Multi-peak solutions for a class of nonlinear Schrödinger equations, NoDEA Nonlinear Differential Equations Appl. 9 (1) (2002) 69-91. | MR 1891696 | Zbl 1001.35030
,[39] On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (2) (1992) 270-291. | MR 1162728 | Zbl 0763.35087
,[40] Semiclassical states for coupled Schrödinger-Maxwell equations: concentration around a sphere, Math. Models Methods Appl. Sci. 15 (1) (2005) 141-164. | Zbl 1074.81023
,[41] On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys. 153 (2) (1993) 229-244. | MR 1218300 | Zbl 0795.35118
,[42] On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations 129 (2) (1996) 315-333. | MR 1404386 | Zbl 0865.35011
,[43] J. Wei, M. Winter, Symmetric and asymmetric multiple clusters in a reaction-diffusion system, NoDEA Nonlinear Differential Equations Appl., in press. | MR 2374210 | Zbl pre05242837
[44] Clustered spots in the FitzHugh-Nagumo system, J. Differential Equations 213 (1) (2005) 121-145. | Zbl pre02182110
, ,