@article{AIHPC_2007__24_3_443_0, author = {Barrandon, Matthieu}, title = {Benjamin-Ono periodic bifurcating water waves in presence of an essential spectrum}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {24}, year = {2007}, pages = {443-469}, doi = {10.1016/j.anihpc.2006.03.007}, zbl = {pre05225609}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2007__24_3_443_0} }
Barrandon, Matthieu. Benjamin-Ono periodic bifurcating water waves in presence of an essential spectrum. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) pp. 443-469. doi : 10.1016/j.anihpc.2006.03.007. http://gdmltest.u-ga.fr/item/AIHPC_2007__24_3_443_0/
[1] On the theory of internal waves of permanent form in fluids of great depth, Trans. Amer. Math. Soc. 364 (1994) 399-419. | MR 1145726 | Zbl 0829.76012
,[2] Uniqueness and related analytic properties for the Benjamin-Ono equation - a nonlinear Neumann problem in the plane, Acta Math. 105 (1989) 1-49.
, ,[3] Reversible bifurcation of homoclinic solutions in presence of an essential spectrum, J. Math. Fluid Mech. 8 (2006) 267-310. | MR 2220447 | Zbl 1105.35014
,[4] Internal waves of permanent form in fluids of great depth, J. Fluid Mech. 29 (1967) 559-592. | Zbl 0147.46502
,[5] Water-waves as a spatial dynamical system, in: , (Eds.), Handbook of Mathematical Fluid Dynamics, vol. II, Elsevier, 2003, pp. 443-499. | MR 1984157 | Zbl pre02019787
, ,[6] Gravity and capillary-gravity periodic traveling waves for two superposed fluid layers, one being of infinite depth, J. Math. Fluid. Mech. 1 (1999) 24-61. | MR 1699018 | Zbl 0926.76020
,[7] Gravity traveling waves for two superposed fluid layers of infinite depth: a new type of bifurcation, Philos. Trans. R. Soc. Lond. Ser. A 360 (2002) 2245-2336. | MR 1949970 | Zbl pre01896123
, , ,[8] Wave solutions of reversible systems and applications, J. Differential Equations 45 (1982) 113-127. | MR 662490 | Zbl 0507.35033
,[9] Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan 39 (1975) 1082-1091. | MR 398275
,[10] Meromorphic families of compact operators, Arch. Rational Mech. Anal. 31 (1968/1969) 372-379. | MR 233240 | Zbl 0167.43002
,[11] Existence of solitary internal waves in a two-layer fluid of infinite depth, Nonlinear Anal. 30 (1997) 5481-5490. | MR 1726052 | Zbl 0912.76013
,