@article{AIHPC_2007__24_3_341_0, author = {Tang, Qi and Zhang, Kewei}, title = {An evolutionary double-well problem}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {24}, year = {2007}, pages = {341-359}, doi = {10.1016/j.anihpc.2006.11.002}, mrnumber = {2319937}, zbl = {pre05225604}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2007__24_3_341_0} }
Tang, Qi; Zhang, Kewei. An evolutionary double-well problem. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) pp. 341-359. doi : 10.1016/j.anihpc.2006.11.002. http://gdmltest.u-ga.fr/item/AIHPC_2007__24_3_341_0/
[1] Semi-continuity problems in the calculus of variations, Arch. Ration. Mech. Anal. 86 (1984) 125-145. | MR 751305 | Zbl 0565.49010
, ,[2] Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal. 63 (1977) 337-403. | MR 475169 | Zbl 0368.73040
,[3] A version of the fundamental theorem of Young measures, in: , , (Eds.), Partial Differential Equations and Continuum Models of Phase Transitions, Lecture Notes in Phys., vol. 334, Springer, Berlin, 1989, pp. 207-215. | MR 1036070 | Zbl 0991.49500
,[4] Continuity properties and global attractors of generalized semi-flows and the Navier-Stokes equations, J. Nonlinear Sci. 7 (5) (1997) 475-502. | Zbl 0903.58020
,[5] Restrictions on microstructures, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 843-878. | MR 1303758 | Zbl 0808.73063
, , , ,[6] Direct Methods in the Calculus of Variations, Springer-Verlag, 1989. | MR 990890 | Zbl 0703.49001
,[7] Weak solutions for a class of nonlinear systems of visco-elasticity, Arch. Ration. Mech. Anal. 155 (2000) 299-334. | MR 1808121 | Zbl 0991.74021
,[8] An unusual minimization principle for parabolic gradient flows, SIAM J. Math. Anal. 27 (1) (1996) 1-4. | MR 1373143 | Zbl 0857.35057
,[9] Regularity theorems for nonlinear systems of partial differential equations under natural ellipticity conditions, Analysis 7 (1987) 83-93. | MR 885719 | Zbl 0624.35032
,[10] Introduction to Regularity Theory for Nonlinear Elliptic Systems, Birkhäuser, Basel, 1993. | MR 1239172 | Zbl 0786.35001
,[11] Asymptotic Behaviour of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988. | MR 941371 | Zbl 0642.58013
,[12] The relaxation of a double-well energy, Cont. Mech. Therm. 3 (1991) 981-1000. | MR 1122017 | Zbl 0825.73029
,[13] Characterizations of Young measures generated by gradients, Arch. Ration. Mech. Anal. 115 (4) (1991) 329-365. | MR 1120852 | Zbl 0754.49020
, ,[14] Gradient Young measures generated by sequences in Sobolev spaces, J. Geom. Anal. 4 (1) (1994) 59-90. | MR 1274138 | Zbl 0808.46046
, ,[15] J. Kristensen, Finite functionals and Young measures generated by gradients of Sobolev functions, Ph.D. Thesis, Technical University of Denmark, Lyngby, 1994.
[16] Multiple Integrals in the Calculus of Variations, Springer, 1966. | MR 202511 | Zbl 0142.38701
,[17] Unexpected solutions of first and second order partial differential equations, Special Volume Proc. ICM Volume II Documenta Math. (1998) 691-702. | MR 1648117 | Zbl 0896.35029
, ,[18] M.O. Rieger, Young measure solutions for non-convex elasto-dynamics, Preprint. | Zbl 1039.74005
[19] Rank-one convexity does not imply quasi-convexity, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992) 185-189. | MR 1149994 | Zbl 0777.49015
,[20] Time dependent Ginzburg-Landau equations of superconductivity, Physica D 88 (1995) 139-166. | MR 1360881 | Zbl 0900.35371
, ,[21] Q. Tang, K.W. Zhang, Convergence of heat flow solutions under multi-well potential energy, Preprint.
[22] On the Dirichlet problem for a class of quasilinear elliptic systems of partial differential equations in divergence form, in: (Ed.), Partial Differential Equations, Proc. Sympos., Tianjin, 1986, Lecture Notes on Math., vol. 1306, Springer-Verlag, 1988, pp. 262-277. | MR 1032785 | Zbl 0672.35026
,[23] Biting theorems for Jacobians and their applications, Ann. Inst. H. Poincaré 7 (1990) 345-365. | Numdam | MR 1067780 | Zbl 0717.49012
,[24] A two-well structure and intrinsic mountain pass points, Cal. Var. Partial Differential Equations 13 (2001) 231-264. | MR 1861099 | Zbl 0997.49013
,