@article{AIHPC_2007__24_2_325_0, author = {Pistoia, Angela and Weth, Tobias}, title = {Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {24}, year = {2007}, pages = {325-340}, doi = {10.1016/j.anihpc.2006.03.002}, mrnumber = {2310698}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2007__24_2_325_0} }
Pistoia, Angela; Weth, Tobias. Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) pp. 325-340. doi : 10.1016/j.anihpc.2006.03.002. http://gdmltest.u-ga.fr/item/AIHPC_2007__24_2_325_0/
[1] Solutions d'équations elliptiques avec exposant de Sobolev critique qui changent de signe, C. R. Acad. Sci. Paris 306 (1988) 711-714. | MR 944417 | Zbl 0696.35059
, , ,[2] Nodal solutions of elliptic equations with critical Sobolev exponents, J. Differential Equations 85 (1990) 151-170. | MR 1052332 | Zbl 0702.35099
, , ,[3] Problèmes isoperimetriques et espaces de Sobolev, J. Differential Geom. 11 (1976) 573-598. | MR 448404 | Zbl 0371.46011
,[4] Critical Points at Infinity in Some Variational Problems, Pitman Research Notes in Mathematics Series, vol. 182, Longman, 1989. | MR 1019828 | Zbl 0676.58021
,[5] On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (3) (1988) 253-294. | MR 929280 | Zbl 0649.35033
, ,[6] On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var. Partial Differential Equations 3 (1995) 67-93. | MR 1384837 | Zbl 0814.35032
, , ,[7] Critical point theory on partially ordered Hilbert spaces, J. Funct. Anal. 186 (2001) 117-152. | MR 1863294 | Zbl 1211.58003 | Zbl pre01679364
,[8] On the existence of sign changing solutions for semilinear Dirichlet problems, Topol. Methods Nonlinear Anal. 7 (1996) 115-131. | MR 1422008 | Zbl 0903.58004
, ,[9] A note on additional properties of sign changing solutions to superlinear elliptic equations, Topol. Methods Nonlinear Anal. 22 (2003) 1-14. | MR 2037264 | Zbl 1094.35041
, ,[10] On the existence and the profile of nodal solutions of elliptic equations involving critical growth, Calc. Var. Partial Differential Equations 26 (3) (2006) 265-282. | MR 2232205 | Zbl 1104.35009
, , ,[11] A nonexistence result of single peaked solutions to a supercritical nonlinear problem, Comm. Contemp. Math. 5 (2) (2003) 179-195. | MR 1966257 | Zbl 1066.35035
, , , ,[12] A note on the Sobolev inequality, J. Funct. Anal. 100 (1991) 18-24. | MR 1124290 | Zbl 0755.46014
, ,[13] Asymptotics for elliptic equations involving critical growth, in: Partial Differential Equations and the Calculus of Variations, vol. I, Progr. Nonlinear Differential Equations Appl., vol. 1, Birkhäuser, Boston, MA, 1996, pp. 149-192. | MR 1034005 | Zbl 0685.35013
, ,[14] Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989) 271-297. | MR 982351 | Zbl 0702.35085
, , ,[15] The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in a symmetric domain, Nonlinearity 16 (2003) 579-590. | MR 1959099 | Zbl 1108.35054
, ,[16] A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math. 27 (1997) 1041-1053. | MR 1627654 | Zbl 0907.35050
, , ,[17] Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal. 69 (1986) 298-306. | MR 867663 | Zbl 0614.35035
, , ,[18] Multiple solutions for the Brezis-Nirenberg problem, Adv. Differential Equations 10 (4) (2005) 463-480. | Zbl pre05056156
, ,[19] Minimal nodal solutions of the pure critical exponent problem on a symmetric domain, Calc. Var. Partial Differential Equations 21 (1) (2004) 1-14. | MR 2078744 | Zbl 1097.35048
, ,[20] “Bubble-tower” radial solutions in the slightly supercritical Brezis-Nirenberg problem, J. Differential Equations 193 (2) (2003) 280-306. | Zbl pre02002181
, , ,[21] The Brezis-Nirenberg problem near criticality in dimension 3, J. Math. Pures Appl. (9) 83 (12) (2004) 1405-1456. | Zbl 1130.35040
, , ,[22] Two-bubble solutions in the super-critical Bahri-Coron's problem, Calc. Var. Partial Differential Equations 16 (2003) 113-145. | Zbl pre01922405
, , ,[23] Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries, Bull. London Math. Soc. 35 (2003) 513-521. | MR 1979006 | Zbl 1109.35334
, , ,[24] Super-critical boundary bubbling in a semilinear Neumann problem, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (1) (2005) 45-82. | Numdam | MR 2114411 | Zbl 1130.35064
, , ,[25] On a conformally invariant elliptic equation on , Comm. Math. Phys. 107 (1986) 331-335. | MR 863646 | Zbl 0608.35017
,[26] Semilinear Dirichlet problem with nearly critical exponent, asymptotic location of hot spots, Manuscripta Math. 94 (1997) 337-346. | MR 1485441 | Zbl 0892.35061
, ,[27] Infinitely many solutions for some nonlinear elliptic problems in symmetrical domains, Proc. Roy. Soc. Edinburgh 105 (1987) 205-213. | MR 890056 | Zbl 0676.35024
, ,[28] Bubble towers for supercritical semilinear elliptic equations, J. Funct. Anal. 221 (2) (2005) 251-302. | MR 2124865 | Zbl 1129.35379
, , ,[29] Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991) 159-174. | Numdam | MR 1096602 | Zbl 0729.35014
,[30] Existence and multiplicity of nodal solutions for nonlinear elliptic equations with critical Sobolev growth, J. Funct. Anal. 119 (1994) 298-318. | MR 1261094 | Zbl 0798.35052
, ,[31] Existence of changing-sign solutions for some critical problems on , Comm. Pure Appl. Anal. 4 (1) (2005) 143-164. | MR 2126282 | Zbl 1123.35019
, , ,[32] Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975) 567-597. | MR 477445 | Zbl 0325.35038
, ,[33] Prescribing scalar curvature on and related problems. I, J. Differential Equations 120 (2) (1995) 319-410. | MR 1347349 | Zbl 0827.53039
,[34] On the effect of the domain geometry on the existence of sign changing solutions to elliptic problems with critical and supercritical growth, Nonlinearity 17 (3) (2004) 851-866. | MR 2057131 | Zbl 1102.35042
, ,[35] Positive solutions for slightly super-critical elliptic equations in contractible domains, C. R. Math. Acad. Sci. Paris, Ser. I 335 (2002) 459-462. | MR 1937113 | Zbl 1010.35043
, ,[36] On the number of nodal domains for elliptic differential operators, J. London Math. Soc. (2) 31 (1985) 91-100. | MR 810566 | Zbl 0579.35063
,[37] Multispike solutions for a nonlinear elliptic problem involving critical Sobolev exponent, Indiana Univ. Math. J. 5 (2002) 541-579. | MR 1911045 | Zbl 1074.35037
, ,[38] A. Pistoia, O. Rey, Multiplicity of solutions to the supercritical Bahri-Coron's problem in pierced domains, Adv. Differential Equations, in press.
[39] On the eigenfunctions of the equation , Dokl. Akad. Nauk SSSR 165 (1965) 36-39, (in Russian). | MR 192184 | Zbl 0141.30202
,[40] Blow-up points of solutions to elliptic equations with limiting nonlinearity, Differential Integral Equations 4 (1991) 1155-1167. | MR 1133750 | Zbl 0830.35043
,[41] The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990) 1-52. | MR 1040954 | Zbl 0786.35059
,[42] Proof of two conjectures of H. Brezis and L.A. Peletier, Manuscripta Math. 65 (1989) 19-37. | MR 1006624 | Zbl 0708.35032
,[43] Best constants in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976) 353-372. | MR 463908 | Zbl 0353.46018
,